Solve for y
y=\frac{33}{32}+\frac{31}{32}i=1.03125+0.96875i
y=\frac{33}{32}-\frac{31}{32}i=1.03125-0.96875i
Share
Copied to clipboard
\left(y+\frac{1}{16}\right)^{2}=\left(\sqrt{\frac{y}{4}-\left(y-2\right)^{2}}\right)^{2}
Square both sides of the equation.
y^{2}+\frac{1}{8}y+\frac{1}{256}=\left(\sqrt{\frac{y}{4}-\left(y-2\right)^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+\frac{1}{16}\right)^{2}.
y^{2}+\frac{1}{8}y+\frac{1}{256}=\left(\sqrt{\frac{y}{4}-\left(y^{2}-4y+4\right)}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}+\frac{1}{8}y+\frac{1}{256}=\left(\sqrt{\frac{y}{4}-y^{2}+4y-4}\right)^{2}
To find the opposite of y^{2}-4y+4, find the opposite of each term.
y^{2}+\frac{1}{8}y+\frac{1}{256}=\left(\sqrt{\frac{17}{4}y-y^{2}-4}\right)^{2}
Combine \frac{y}{4} and 4y to get \frac{17}{4}y.
y^{2}+\frac{1}{8}y+\frac{1}{256}=\frac{17}{4}y-y^{2}-4
Calculate \sqrt{\frac{17}{4}y-y^{2}-4} to the power of 2 and get \frac{17}{4}y-y^{2}-4.
y^{2}+\frac{1}{8}y+\frac{1}{256}-\frac{17}{4}y=-y^{2}-4
Subtract \frac{17}{4}y from both sides.
y^{2}-\frac{33}{8}y+\frac{1}{256}=-y^{2}-4
Combine \frac{1}{8}y and -\frac{17}{4}y to get -\frac{33}{8}y.
y^{2}-\frac{33}{8}y+\frac{1}{256}+y^{2}=-4
Add y^{2} to both sides.
2y^{2}-\frac{33}{8}y+\frac{1}{256}=-4
Combine y^{2} and y^{2} to get 2y^{2}.
2y^{2}-\frac{33}{8}y+\frac{1}{256}+4=0
Add 4 to both sides.
2y^{2}-\frac{33}{8}y+\frac{1025}{256}=0
Add \frac{1}{256} and 4 to get \frac{1025}{256}.
y=\frac{-\left(-\frac{33}{8}\right)±\sqrt{\left(-\frac{33}{8}\right)^{2}-4\times 2\times \frac{1025}{256}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{33}{8} for b, and \frac{1025}{256} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{33}{8}\right)±\sqrt{\frac{1089}{64}-4\times 2\times \frac{1025}{256}}}{2\times 2}
Square -\frac{33}{8} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-\frac{33}{8}\right)±\sqrt{\frac{1089}{64}-8\times \frac{1025}{256}}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-\frac{33}{8}\right)±\sqrt{\frac{1089}{64}-\frac{1025}{32}}}{2\times 2}
Multiply -8 times \frac{1025}{256}.
y=\frac{-\left(-\frac{33}{8}\right)±\sqrt{-\frac{961}{64}}}{2\times 2}
Add \frac{1089}{64} to -\frac{1025}{32} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{33}{8}\right)±\frac{31}{8}i}{2\times 2}
Take the square root of -\frac{961}{64}.
y=\frac{\frac{33}{8}±\frac{31}{8}i}{2\times 2}
The opposite of -\frac{33}{8} is \frac{33}{8}.
y=\frac{\frac{33}{8}±\frac{31}{8}i}{4}
Multiply 2 times 2.
y=\frac{\frac{33}{8}+\frac{31}{8}i}{4}
Now solve the equation y=\frac{\frac{33}{8}±\frac{31}{8}i}{4} when ± is plus. Add \frac{33}{8} to \frac{31}{8}i.
y=\frac{33}{32}+\frac{31}{32}i
Divide \frac{33}{8}+\frac{31}{8}i by 4.
y=\frac{\frac{33}{8}-\frac{31}{8}i}{4}
Now solve the equation y=\frac{\frac{33}{8}±\frac{31}{8}i}{4} when ± is minus. Subtract \frac{31}{8}i from \frac{33}{8}.
y=\frac{33}{32}-\frac{31}{32}i
Divide \frac{33}{8}-\frac{31}{8}i by 4.
y=\frac{33}{32}+\frac{31}{32}i y=\frac{33}{32}-\frac{31}{32}i
The equation is now solved.
\frac{33}{32}+\frac{31}{32}i+\frac{1}{16}=\sqrt{\frac{\frac{33}{32}+\frac{31}{32}i}{4}-\left(\frac{33}{32}+\frac{31}{32}i-2\right)^{2}}
Substitute \frac{33}{32}+\frac{31}{32}i for y in the equation y+\frac{1}{16}=\sqrt{\frac{y}{4}-\left(y-2\right)^{2}}.
\frac{35}{32}+\frac{31}{32}i=\frac{35}{32}+\frac{31}{32}i
Simplify. The value y=\frac{33}{32}+\frac{31}{32}i satisfies the equation.
\frac{33}{32}-\frac{31}{32}i+\frac{1}{16}=\sqrt{\frac{\frac{33}{32}-\frac{31}{32}i}{4}-\left(\frac{33}{32}-\frac{31}{32}i-2\right)^{2}}
Substitute \frac{33}{32}-\frac{31}{32}i for y in the equation y+\frac{1}{16}=\sqrt{\frac{y}{4}-\left(y-2\right)^{2}}.
\frac{35}{32}-\frac{31}{32}i=\frac{35}{32}-\frac{31}{32}i
Simplify. The value y=\frac{33}{32}-\frac{31}{32}i satisfies the equation.
y=\frac{33}{32}+\frac{31}{32}i y=\frac{33}{32}-\frac{31}{32}i
List all solutions of y+\frac{1}{16}=\sqrt{\frac{y}{4}-\left(y-2\right)^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}