Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

xy+yz+xz-xyz=0
Subtract xyz from both sides.
xy+xz-xyz=-yz
Subtract yz from both sides. Anything subtracted from zero gives its negation.
\left(y+z-yz\right)x=-yz
Combine all terms containing x.
\left(z+y-yz\right)x=-yz
The equation is in standard form.
\frac{\left(z+y-yz\right)x}{z+y-yz}=-\frac{yz}{z+y-yz}
Divide both sides by y+z-yz.
x=-\frac{yz}{z+y-yz}
Dividing by y+z-yz undoes the multiplication by y+z-yz.
xy+yz+xz-xyz=0
Subtract xyz from both sides.
xy+yz-xyz=-xz
Subtract xz from both sides. Anything subtracted from zero gives its negation.
\left(x+z-xz\right)y=-xz
Combine all terms containing y.
\left(z+x-xz\right)y=-xz
The equation is in standard form.
\frac{\left(z+x-xz\right)y}{z+x-xz}=-\frac{xz}{z+x-xz}
Divide both sides by x+z-xz.
y=-\frac{xz}{z+x-xz}
Dividing by x+z-xz undoes the multiplication by x+z-xz.
xy+yz+xz-xyz=0
Subtract xyz from both sides.
xy+xz-xyz=-yz
Subtract yz from both sides. Anything subtracted from zero gives its negation.
\left(y+z-yz\right)x=-yz
Combine all terms containing x.
\left(z+y-yz\right)x=-yz
The equation is in standard form.
\frac{\left(z+y-yz\right)x}{z+y-yz}=-\frac{yz}{z+y-yz}
Divide both sides by y+z-yz.
x=-\frac{yz}{z+y-yz}
Dividing by y+z-yz undoes the multiplication by y+z-yz.
xy+yz+xz-xyz=0
Subtract xyz from both sides.
xy+yz-xyz=-xz
Subtract xz from both sides. Anything subtracted from zero gives its negation.
\left(x+z-xz\right)y=-xz
Combine all terms containing y.
\left(z+x-xz\right)y=-xz
The equation is in standard form.
\frac{\left(z+x-xz\right)y}{z+x-xz}=-\frac{xz}{z+x-xz}
Divide both sides by x+z-xz.
y=-\frac{xz}{z+x-xz}
Dividing by x+z-xz undoes the multiplication by x+z-xz.