Solve for x
x=-\frac{yz-19}{y+z}
y\neq -z
Solve for y
y=-\frac{xz-19}{x+z}
x\neq -z
Share
Copied to clipboard
xy+xz=19-yz
Subtract yz from both sides.
\left(y+z\right)x=19-yz
Combine all terms containing x.
\frac{\left(y+z\right)x}{y+z}=\frac{19-yz}{y+z}
Divide both sides by y+z.
x=\frac{19-yz}{y+z}
Dividing by y+z undoes the multiplication by y+z.
xy+yz=19-xz
Subtract xz from both sides.
\left(x+z\right)y=19-xz
Combine all terms containing y.
\frac{\left(x+z\right)y}{x+z}=\frac{19-xz}{x+z}
Divide both sides by x+z.
y=\frac{19-xz}{x+z}
Dividing by x+z undoes the multiplication by x+z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}