Solve for x
x=\frac{1}{\sqrt{e}}\approx 0.60653066
x=-\frac{1}{\sqrt{e}}\approx -0.60653066
Graph
Share
Copied to clipboard
x^{2}e-1=0
Multiply x and x to get x^{2}.
x^{2}e=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{ex^{2}}{e}=\frac{1}{e}
Divide both sides by e.
x^{2}=\frac{1}{e}
Dividing by e undoes the multiplication by e.
x=\frac{1}{\sqrt{e}} x=-\frac{1}{\sqrt{e}}
Take the square root of both sides of the equation.
x^{2}e-1=0
Multiply x and x to get x^{2}.
ex^{2}-1=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4e\left(-1\right)}}{2e}
This equation is in standard form: ax^{2}+bx+c=0. Substitute e for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4e\left(-1\right)}}{2e}
Square 0.
x=\frac{0±\sqrt{\left(-4e\right)\left(-1\right)}}{2e}
Multiply -4 times e.
x=\frac{0±\sqrt{4e}}{2e}
Multiply -4e times -1.
x=\frac{0±2\sqrt{e}}{2e}
Take the square root of 4e.
x=\frac{1}{\sqrt{e}}
Now solve the equation x=\frac{0±2\sqrt{e}}{2e} when ± is plus.
x=-\frac{1}{\sqrt{e}}
Now solve the equation x=\frac{0±2\sqrt{e}}{2e} when ± is minus.
x=\frac{1}{\sqrt{e}} x=-\frac{1}{\sqrt{e}}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}