Solve for x
x=\frac{7}{x_{2}-2}
x_{2}\neq 2
Solve for x_2
x_{2}=2+\frac{7}{x}
x\neq 0
Graph
Share
Copied to clipboard
x_{2}x-7-2x=0
Subtract 2x from both sides.
x_{2}x-2x=7
Add 7 to both sides. Anything plus zero gives itself.
\left(x_{2}-2\right)x=7
Combine all terms containing x.
\frac{\left(x_{2}-2\right)x}{x_{2}-2}=\frac{7}{x_{2}-2}
Divide both sides by x_{2}-2.
x=\frac{7}{x_{2}-2}
Dividing by x_{2}-2 undoes the multiplication by x_{2}-2.
x_{2}x=2x+7
Add 7 to both sides.
xx_{2}=2x+7
The equation is in standard form.
\frac{xx_{2}}{x}=\frac{2x+7}{x}
Divide both sides by x.
x_{2}=\frac{2x+7}{x}
Dividing by x undoes the multiplication by x.
x_{2}=2+\frac{7}{x}
Divide 2x+7 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}