Solve for x
x=\frac{x_{2}+12}{3}
Solve for x_2
x_{2}=3\left(x-4\right)
Graph
Share
Copied to clipboard
-3x_{2}+9x-36=0
Combine x_{2} and -4x_{2} to get -3x_{2}.
9x-36=3x_{2}
Add 3x_{2} to both sides. Anything plus zero gives itself.
9x=3x_{2}+36
Add 36 to both sides.
\frac{9x}{9}=\frac{3x_{2}+36}{9}
Divide both sides by 9.
x=\frac{3x_{2}+36}{9}
Dividing by 9 undoes the multiplication by 9.
x=\frac{x_{2}}{3}+4
Divide 36+3x_{2} by 9.
-3x_{2}+9x-36=0
Combine x_{2} and -4x_{2} to get -3x_{2}.
-3x_{2}-36=-9x
Subtract 9x from both sides. Anything subtracted from zero gives its negation.
-3x_{2}=-9x+36
Add 36 to both sides.
-3x_{2}=36-9x
The equation is in standard form.
\frac{-3x_{2}}{-3}=\frac{36-9x}{-3}
Divide both sides by -3.
x_{2}=\frac{36-9x}{-3}
Dividing by -3 undoes the multiplication by -3.
x_{2}=3x-12
Divide -9x+36 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}