Solve for y
y=-\frac{x^{2}-1}{1-2x}
x\neq \frac{1}{2}\text{ and }x\neq 0
Solve for x
\left\{\begin{matrix}\\x=\sqrt{y^{2}-y+1}+y\text{, }&\text{unconditionally}\\x=-\sqrt{y^{2}-y+1}+y\text{, }&y\neq 1\end{matrix}\right.
Graph
Share
Copied to clipboard
xx-2yx=1-y
Multiply both sides of the equation by x.
x^{2}-2yx=1-y
Multiply x and x to get x^{2}.
x^{2}-2yx+y=1
Add y to both sides.
-2yx+y=1-x^{2}
Subtract x^{2} from both sides.
\left(-2x+1\right)y=1-x^{2}
Combine all terms containing y.
\left(1-2x\right)y=1-x^{2}
The equation is in standard form.
\frac{\left(1-2x\right)y}{1-2x}=\frac{1-x^{2}}{1-2x}
Divide both sides by -2x+1.
y=\frac{1-x^{2}}{1-2x}
Dividing by -2x+1 undoes the multiplication by -2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}