Solve for x
x=6
Graph
Share
Copied to clipboard
\left(x-2\right)^{2}=\left(\sqrt{x+10}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(\sqrt{x+10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=x+10
Calculate \sqrt{x+10} to the power of 2 and get x+10.
x^{2}-4x+4-x=10
Subtract x from both sides.
x^{2}-5x+4=10
Combine -4x and -x to get -5x.
x^{2}-5x+4-10=0
Subtract 10 from both sides.
x^{2}-5x-6=0
Subtract 10 from 4 to get -6.
a+b=-5 ab=-6
To solve the equation, factor x^{2}-5x-6 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(x-6\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=6 x=-1
To find equation solutions, solve x-6=0 and x+1=0.
6-2=\sqrt{6+10}
Substitute 6 for x in the equation x-2=\sqrt{x+10}.
4=4
Simplify. The value x=6 satisfies the equation.
-1-2=\sqrt{-1+10}
Substitute -1 for x in the equation x-2=\sqrt{x+10}.
-3=3
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=6
Equation x-2=\sqrt{x+10} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}