Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)^{2}=\left(\sqrt{8x-48}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(\sqrt{8x-48}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=8x-48
Calculate \sqrt{8x-48} to the power of 2 and get 8x-48.
x^{2}-4x+4-8x=-48
Subtract 8x from both sides.
x^{2}-12x+4=-48
Combine -4x and -8x to get -12x.
x^{2}-12x+4+48=0
Add 48 to both sides.
x^{2}-12x+52=0
Add 4 and 48 to get 52.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 52}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 52}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-208}}{2}
Multiply -4 times 52.
x=\frac{-\left(-12\right)±\sqrt{-64}}{2}
Add 144 to -208.
x=\frac{-\left(-12\right)±8i}{2}
Take the square root of -64.
x=\frac{12±8i}{2}
The opposite of -12 is 12.
x=\frac{12+8i}{2}
Now solve the equation x=\frac{12±8i}{2} when ± is plus. Add 12 to 8i.
x=6+4i
Divide 12+8i by 2.
x=\frac{12-8i}{2}
Now solve the equation x=\frac{12±8i}{2} when ± is minus. Subtract 8i from 12.
x=6-4i
Divide 12-8i by 2.
x=6+4i x=6-4i
The equation is now solved.
6+4i-2=\sqrt{8\left(6+4i\right)-48}
Substitute 6+4i for x in the equation x-2=\sqrt{8x-48}.
4+4i=4+4i
Simplify. The value x=6+4i satisfies the equation.
6-4i-2=\sqrt{8\left(6-4i\right)-48}
Substitute 6-4i for x in the equation x-2=\sqrt{8x-48}.
4-4i=4-4i
Simplify. The value x=6-4i satisfies the equation.
x=6+4i x=6-4i
List all solutions of x-2=\sqrt{8x-48}.