Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-2+x^{2}+\left(x+1\right)^{2}+2^{2}x+2^{9}=60
Combine x and x to get 2x.
2x-2+x^{2}+x^{2}+2x+1+2^{2}x+2^{9}=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x-2+2x^{2}+2x+1+2^{2}x+2^{9}=60
Combine x^{2} and x^{2} to get 2x^{2}.
4x-2+2x^{2}+1+2^{2}x+2^{9}=60
Combine 2x and 2x to get 4x.
4x-1+2x^{2}+2^{2}x+2^{9}=60
Add -2 and 1 to get -1.
4x-1+2x^{2}+4x+2^{9}=60
Calculate 2 to the power of 2 and get 4.
8x-1+2x^{2}+2^{9}=60
Combine 4x and 4x to get 8x.
8x-1+2x^{2}+512=60
Calculate 2 to the power of 9 and get 512.
8x+511+2x^{2}=60
Add -1 and 512 to get 511.
8x+511+2x^{2}-60=0
Subtract 60 from both sides.
8x+451+2x^{2}=0
Subtract 60 from 511 to get 451.
2x^{2}+8x+451=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 451}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and 451 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 451}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\times 451}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64-3608}}{2\times 2}
Multiply -8 times 451.
x=\frac{-8±\sqrt{-3544}}{2\times 2}
Add 64 to -3608.
x=\frac{-8±2\sqrt{886}i}{2\times 2}
Take the square root of -3544.
x=\frac{-8±2\sqrt{886}i}{4}
Multiply 2 times 2.
x=\frac{-8+2\sqrt{886}i}{4}
Now solve the equation x=\frac{-8±2\sqrt{886}i}{4} when ± is plus. Add -8 to 2i\sqrt{886}.
x=\frac{\sqrt{886}i}{2}-2
Divide -8+2i\sqrt{886} by 4.
x=\frac{-2\sqrt{886}i-8}{4}
Now solve the equation x=\frac{-8±2\sqrt{886}i}{4} when ± is minus. Subtract 2i\sqrt{886} from -8.
x=-\frac{\sqrt{886}i}{2}-2
Divide -8-2i\sqrt{886} by 4.
x=\frac{\sqrt{886}i}{2}-2 x=-\frac{\sqrt{886}i}{2}-2
The equation is now solved.
2x-2+x^{2}+\left(x+1\right)^{2}+2^{2}x+2^{9}=60
Combine x and x to get 2x.
2x-2+x^{2}+x^{2}+2x+1+2^{2}x+2^{9}=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x-2+2x^{2}+2x+1+2^{2}x+2^{9}=60
Combine x^{2} and x^{2} to get 2x^{2}.
4x-2+2x^{2}+1+2^{2}x+2^{9}=60
Combine 2x and 2x to get 4x.
4x-1+2x^{2}+2^{2}x+2^{9}=60
Add -2 and 1 to get -1.
4x-1+2x^{2}+4x+2^{9}=60
Calculate 2 to the power of 2 and get 4.
8x-1+2x^{2}+2^{9}=60
Combine 4x and 4x to get 8x.
8x-1+2x^{2}+512=60
Calculate 2 to the power of 9 and get 512.
8x+511+2x^{2}=60
Add -1 and 512 to get 511.
8x+2x^{2}=60-511
Subtract 511 from both sides.
8x+2x^{2}=-451
Subtract 511 from 60 to get -451.
2x^{2}+8x=-451
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+8x}{2}=-\frac{451}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=-\frac{451}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=-\frac{451}{2}
Divide 8 by 2.
x^{2}+4x+2^{2}=-\frac{451}{2}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-\frac{451}{2}+4
Square 2.
x^{2}+4x+4=-\frac{443}{2}
Add -\frac{451}{2} to 4.
\left(x+2\right)^{2}=-\frac{443}{2}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{443}{2}}
Take the square root of both sides of the equation.
x+2=\frac{\sqrt{886}i}{2} x+2=-\frac{\sqrt{886}i}{2}
Simplify.
x=\frac{\sqrt{886}i}{2}-2 x=-\frac{\sqrt{886}i}{2}-2
Subtract 2 from both sides of the equation.