Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-1=x^{2}+x\times \frac{1}{2}
Use the distributive property to multiply x by x+\frac{1}{2}.
x-1-x^{2}=x\times \frac{1}{2}
Subtract x^{2} from both sides.
x-1-x^{2}-x\times \frac{1}{2}=0
Subtract x\times \frac{1}{2} from both sides.
\frac{1}{2}x-1-x^{2}=0
Combine x and -x\times \frac{1}{2} to get \frac{1}{2}x.
-x^{2}+\frac{1}{2}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1}{2} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-\frac{1}{2}±\sqrt{-\frac{15}{4}}}{2\left(-1\right)}
Add \frac{1}{4} to -4.
x=\frac{-\frac{1}{2}±\frac{\sqrt{15}i}{2}}{2\left(-1\right)}
Take the square root of -\frac{15}{4}.
x=\frac{-\frac{1}{2}±\frac{\sqrt{15}i}{2}}{-2}
Multiply 2 times -1.
x=\frac{-1+\sqrt{15}i}{-2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{15}i}{2}}{-2} when ± is plus. Add -\frac{1}{2} to \frac{i\sqrt{15}}{2}.
x=\frac{-\sqrt{15}i+1}{4}
Divide \frac{-1+i\sqrt{15}}{2} by -2.
x=\frac{-\sqrt{15}i-1}{-2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{15}i}{2}}{-2} when ± is minus. Subtract \frac{i\sqrt{15}}{2} from -\frac{1}{2}.
x=\frac{1+\sqrt{15}i}{4}
Divide \frac{-1-i\sqrt{15}}{2} by -2.
x=\frac{-\sqrt{15}i+1}{4} x=\frac{1+\sqrt{15}i}{4}
The equation is now solved.
x-1=x^{2}+x\times \frac{1}{2}
Use the distributive property to multiply x by x+\frac{1}{2}.
x-1-x^{2}=x\times \frac{1}{2}
Subtract x^{2} from both sides.
x-1-x^{2}-x\times \frac{1}{2}=0
Subtract x\times \frac{1}{2} from both sides.
\frac{1}{2}x-1-x^{2}=0
Combine x and -x\times \frac{1}{2} to get \frac{1}{2}x.
\frac{1}{2}x-x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
-x^{2}+\frac{1}{2}x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{1}{2}x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{1}{2}}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{1}{2}x=\frac{1}{-1}
Divide \frac{1}{2} by -1.
x^{2}-\frac{1}{2}x=-1
Divide 1 by -1.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-1+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-1+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{15}{16}
Add -1 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{15}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{15}i}{4} x-\frac{1}{4}=-\frac{\sqrt{15}i}{4}
Simplify.
x=\frac{1+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i+1}{4}
Add \frac{1}{4} to both sides of the equation.