Solve for x
x=5
Graph
Share
Copied to clipboard
\left(x-1\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Square both sides of the equation.
x^{2}-2x+1=\left(\sqrt{x+11}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=x+11
Calculate \sqrt{x+11} to the power of 2 and get x+11.
x^{2}-2x+1-x=11
Subtract x from both sides.
x^{2}-3x+1=11
Combine -2x and -x to get -3x.
x^{2}-3x+1-11=0
Subtract 11 from both sides.
x^{2}-3x-10=0
Subtract 11 from 1 to get -10.
a+b=-3 ab=-10
To solve the equation, factor x^{2}-3x-10 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-5 b=2
The solution is the pair that gives sum -3.
\left(x-5\right)\left(x+2\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=5 x=-2
To find equation solutions, solve x-5=0 and x+2=0.
5-1=\sqrt{5+11}
Substitute 5 for x in the equation x-1=\sqrt{x+11}.
4=4
Simplify. The value x=5 satisfies the equation.
-2-1=\sqrt{-2+11}
Substitute -2 for x in the equation x-1=\sqrt{x+11}.
-3=3
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=5
Equation x-1=\sqrt{x+11} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}