Solve for x
x=\frac{y+2}{y-2}
y\neq 2
Solve for y
y=-\frac{2\left(x+1\right)}{1-x}
x\neq 1
Graph
Share
Copied to clipboard
\left(y-2\right)x+\left(y-2\right)\left(-1\right)=y+2+\left(y-2\right)\left(-1\right)
Multiply both sides of the equation by y-2.
yx-2x+\left(y-2\right)\left(-1\right)=y+2+\left(y-2\right)\left(-1\right)
Use the distributive property to multiply y-2 by x.
yx-2x-y+2=y+2+\left(y-2\right)\left(-1\right)
Use the distributive property to multiply y-2 by -1.
yx-2x-y+2=y+2-y+2
Use the distributive property to multiply y-2 by -1.
yx-2x-y+2=2+2
Combine y and -y to get 0.
yx-2x-y+2=4
Add 2 and 2 to get 4.
yx-2x+2=4+y
Add y to both sides.
yx-2x=4+y-2
Subtract 2 from both sides.
yx-2x=2+y
Subtract 2 from 4 to get 2.
\left(y-2\right)x=2+y
Combine all terms containing x.
\left(y-2\right)x=y+2
The equation is in standard form.
\frac{\left(y-2\right)x}{y-2}=\frac{y+2}{y-2}
Divide both sides by y-2.
x=\frac{y+2}{y-2}
Dividing by y-2 undoes the multiplication by y-2.
\left(y-2\right)x+\left(y-2\right)\left(-1\right)=y+2+\left(y-2\right)\left(-1\right)
Variable y cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by y-2.
yx-2x+\left(y-2\right)\left(-1\right)=y+2+\left(y-2\right)\left(-1\right)
Use the distributive property to multiply y-2 by x.
yx-2x-y+2=y+2+\left(y-2\right)\left(-1\right)
Use the distributive property to multiply y-2 by -1.
yx-2x-y+2=y+2-y+2
Use the distributive property to multiply y-2 by -1.
yx-2x-y+2=2+2
Combine y and -y to get 0.
yx-2x-y+2=4
Add 2 and 2 to get 4.
yx-y+2=4+2x
Add 2x to both sides.
yx-y=4+2x-2
Subtract 2 from both sides.
yx-y=2+2x
Subtract 2 from 4 to get 2.
\left(x-1\right)y=2+2x
Combine all terms containing y.
\left(x-1\right)y=2x+2
The equation is in standard form.
\frac{\left(x-1\right)y}{x-1}=\frac{2x+2}{x-1}
Divide both sides by x-1.
y=\frac{2x+2}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
y=\frac{2\left(x+1\right)}{x-1}
Divide 2+2x by x-1.
y=\frac{2\left(x+1\right)}{x-1}\text{, }y\neq 2
Variable y cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}