Solve for x
x=\frac{4z-1}{3}
Solve for z
z=\frac{3x+1}{4}
Share
Copied to clipboard
x+2x-3z-2-z=-3
The opposite of -2x is 2x.
3x-3z-2-z=-3
Combine x and 2x to get 3x.
3x-4z-2=-3
Combine -3z and -z to get -4z.
3x-2=-3+4z
Add 4z to both sides.
3x=-3+4z+2
Add 2 to both sides.
3x=-1+4z
Add -3 and 2 to get -1.
3x=4z-1
The equation is in standard form.
\frac{3x}{3}=\frac{4z-1}{3}
Divide both sides by 3.
x=\frac{4z-1}{3}
Dividing by 3 undoes the multiplication by 3.
x+2x-3z-2-z=-3
The opposite of -2x is 2x.
3x-3z-2-z=-3
Combine x and 2x to get 3x.
3x-4z-2=-3
Combine -3z and -z to get -4z.
-4z-2=-3-3x
Subtract 3x from both sides.
-4z=-3-3x+2
Add 2 to both sides.
-4z=-1-3x
Add -3 and 2 to get -1.
-4z=-3x-1
The equation is in standard form.
\frac{-4z}{-4}=\frac{-3x-1}{-4}
Divide both sides by -4.
z=\frac{-3x-1}{-4}
Dividing by -4 undoes the multiplication by -4.
z=\frac{3x+1}{4}
Divide -1-3x by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}