Solve for x
x=207
Graph
Share
Copied to clipboard
x-\left(\frac{405}{1.1}+\frac{-x}{1.1}\right)=27
Divide each term of 405-x by 1.1 to get \frac{405}{1.1}+\frac{-x}{1.1}.
x-\left(\frac{4050}{11}+\frac{-x}{1.1}\right)=27
Expand \frac{405}{1.1} by multiplying both numerator and the denominator by 10.
x-\left(\frac{4050}{11}-\frac{10}{11}x\right)=27
Divide -x by 1.1 to get -\frac{10}{11}x.
x-\frac{4050}{11}-\left(-\frac{10}{11}x\right)=27
To find the opposite of \frac{4050}{11}-\frac{10}{11}x, find the opposite of each term.
x-\frac{4050}{11}+\frac{10}{11}x=27
The opposite of -\frac{10}{11}x is \frac{10}{11}x.
\frac{21}{11}x-\frac{4050}{11}=27
Combine x and \frac{10}{11}x to get \frac{21}{11}x.
\frac{21}{11}x=27+\frac{4050}{11}
Add \frac{4050}{11} to both sides.
\frac{21}{11}x=\frac{297}{11}+\frac{4050}{11}
Convert 27 to fraction \frac{297}{11}.
\frac{21}{11}x=\frac{297+4050}{11}
Since \frac{297}{11} and \frac{4050}{11} have the same denominator, add them by adding their numerators.
\frac{21}{11}x=\frac{4347}{11}
Add 297 and 4050 to get 4347.
x=\frac{\frac{4347}{11}}{\frac{21}{11}}
Divide both sides by \frac{21}{11}.
x=\frac{4347}{11\times \frac{21}{11}}
Express \frac{\frac{4347}{11}}{\frac{21}{11}} as a single fraction.
x=\frac{4347}{21}
Multiply 11 and \frac{21}{11} to get 21.
x=207
Divide 4347 by 21 to get 207.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}