Solve for x
x = \frac{191}{60} = 3\frac{11}{60} \approx 3.183333333
Graph
Share
Copied to clipboard
x-\frac{174}{60}=17\times \frac{1}{60}
Multiply 174 and \frac{1}{60} to get \frac{174}{60}.
x-\frac{29}{10}=17\times \frac{1}{60}
Reduce the fraction \frac{174}{60} to lowest terms by extracting and canceling out 6.
x-\frac{29}{10}=\frac{17}{60}
Multiply 17 and \frac{1}{60} to get \frac{17}{60}.
x=\frac{17}{60}+\frac{29}{10}
Add \frac{29}{10} to both sides.
x=\frac{17}{60}+\frac{174}{60}
Least common multiple of 60 and 10 is 60. Convert \frac{17}{60} and \frac{29}{10} to fractions with denominator 60.
x=\frac{17+174}{60}
Since \frac{17}{60} and \frac{174}{60} have the same denominator, add them by adding their numerators.
x=\frac{191}{60}
Add 17 and 174 to get 191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}