Solve for x
x=176
Graph
Share
Copied to clipboard
x-\frac{1}{4}x-12-\frac{3}{5}\left(x-\frac{1}{4}x-12\right)=48
To find the opposite of \frac{1}{4}x+12, find the opposite of each term.
\frac{3}{4}x-12-\frac{3}{5}\left(x-\frac{1}{4}x-12\right)=48
Combine x and -\frac{1}{4}x to get \frac{3}{4}x.
\frac{3}{4}x-12-\frac{3}{5}\left(\frac{3}{4}x-12\right)=48
Combine x and -\frac{1}{4}x to get \frac{3}{4}x.
\frac{3}{4}x-12-\frac{3}{5}\times \frac{3}{4}x-\frac{3}{5}\left(-12\right)=48
Use the distributive property to multiply -\frac{3}{5} by \frac{3}{4}x-12.
\frac{3}{4}x-12+\frac{-3\times 3}{5\times 4}x-\frac{3}{5}\left(-12\right)=48
Multiply -\frac{3}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}x-12+\frac{-9}{20}x-\frac{3}{5}\left(-12\right)=48
Do the multiplications in the fraction \frac{-3\times 3}{5\times 4}.
\frac{3}{4}x-12-\frac{9}{20}x-\frac{3}{5}\left(-12\right)=48
Fraction \frac{-9}{20} can be rewritten as -\frac{9}{20} by extracting the negative sign.
\frac{3}{4}x-12-\frac{9}{20}x+\frac{-3\left(-12\right)}{5}=48
Express -\frac{3}{5}\left(-12\right) as a single fraction.
\frac{3}{4}x-12-\frac{9}{20}x+\frac{36}{5}=48
Multiply -3 and -12 to get 36.
\frac{3}{10}x-12+\frac{36}{5}=48
Combine \frac{3}{4}x and -\frac{9}{20}x to get \frac{3}{10}x.
\frac{3}{10}x-\frac{60}{5}+\frac{36}{5}=48
Convert -12 to fraction -\frac{60}{5}.
\frac{3}{10}x+\frac{-60+36}{5}=48
Since -\frac{60}{5} and \frac{36}{5} have the same denominator, add them by adding their numerators.
\frac{3}{10}x-\frac{24}{5}=48
Add -60 and 36 to get -24.
\frac{3}{10}x=48+\frac{24}{5}
Add \frac{24}{5} to both sides.
\frac{3}{10}x=\frac{240}{5}+\frac{24}{5}
Convert 48 to fraction \frac{240}{5}.
\frac{3}{10}x=\frac{240+24}{5}
Since \frac{240}{5} and \frac{24}{5} have the same denominator, add them by adding their numerators.
\frac{3}{10}x=\frac{264}{5}
Add 240 and 24 to get 264.
x=\frac{264}{5}\times \frac{10}{3}
Multiply both sides by \frac{10}{3}, the reciprocal of \frac{3}{10}.
x=\frac{264\times 10}{5\times 3}
Multiply \frac{264}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2640}{15}
Do the multiplications in the fraction \frac{264\times 10}{5\times 3}.
x=176
Divide 2640 by 15 to get 176.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}