Solve for x
x=81
Graph
Share
Copied to clipboard
-\sqrt{x}=-\left(x-72\right)
Subtract x-72 from both sides of the equation.
\sqrt{x}=x-72
Cancel out -1 on both sides.
\left(\sqrt{x}\right)^{2}=\left(x-72\right)^{2}
Square both sides of the equation.
x=\left(x-72\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}-144x+5184
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-72\right)^{2}.
x-x^{2}=-144x+5184
Subtract x^{2} from both sides.
x-x^{2}+144x=5184
Add 144x to both sides.
145x-x^{2}=5184
Combine x and 144x to get 145x.
145x-x^{2}-5184=0
Subtract 5184 from both sides.
-x^{2}+145x-5184=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-145±\sqrt{145^{2}-4\left(-1\right)\left(-5184\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 145 for b, and -5184 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-145±\sqrt{21025-4\left(-1\right)\left(-5184\right)}}{2\left(-1\right)}
Square 145.
x=\frac{-145±\sqrt{21025+4\left(-5184\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-145±\sqrt{21025-20736}}{2\left(-1\right)}
Multiply 4 times -5184.
x=\frac{-145±\sqrt{289}}{2\left(-1\right)}
Add 21025 to -20736.
x=\frac{-145±17}{2\left(-1\right)}
Take the square root of 289.
x=\frac{-145±17}{-2}
Multiply 2 times -1.
x=-\frac{128}{-2}
Now solve the equation x=\frac{-145±17}{-2} when ± is plus. Add -145 to 17.
x=64
Divide -128 by -2.
x=-\frac{162}{-2}
Now solve the equation x=\frac{-145±17}{-2} when ± is minus. Subtract 17 from -145.
x=81
Divide -162 by -2.
x=64 x=81
The equation is now solved.
64-\sqrt{64}-72=0
Substitute 64 for x in the equation x-\sqrt{x}-72=0.
-16=0
Simplify. The value x=64 does not satisfy the equation.
81-\sqrt{81}-72=0
Substitute 81 for x in the equation x-\sqrt{x}-72=0.
0=0
Simplify. The value x=81 satisfies the equation.
x=81
Equation \sqrt{x}=x-72 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}