Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\sqrt{9-3x}=-x
Subtract x from both sides of the equation.
\sqrt{9-3x}=x
Cancel out -1 on both sides.
\left(\sqrt{9-3x}\right)^{2}=x^{2}
Square both sides of the equation.
9-3x=x^{2}
Calculate \sqrt{9-3x} to the power of 2 and get 9-3x.
9-3x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-3x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 9}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 9}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9+36}}{2\left(-1\right)}
Multiply 4 times 9.
x=\frac{-\left(-3\right)±\sqrt{45}}{2\left(-1\right)}
Add 9 to 36.
x=\frac{-\left(-3\right)±3\sqrt{5}}{2\left(-1\right)}
Take the square root of 45.
x=\frac{3±3\sqrt{5}}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{5}+3}{-2}
Now solve the equation x=\frac{3±3\sqrt{5}}{-2} when ± is plus. Add 3 to 3\sqrt{5}.
x=\frac{-3\sqrt{5}-3}{2}
Divide 3+3\sqrt{5} by -2.
x=\frac{3-3\sqrt{5}}{-2}
Now solve the equation x=\frac{3±3\sqrt{5}}{-2} when ± is minus. Subtract 3\sqrt{5} from 3.
x=\frac{3\sqrt{5}-3}{2}
Divide 3-3\sqrt{5} by -2.
x=\frac{-3\sqrt{5}-3}{2} x=\frac{3\sqrt{5}-3}{2}
The equation is now solved.
\frac{-3\sqrt{5}-3}{2}-\sqrt{9-3\times \frac{-3\sqrt{5}-3}{2}}=0
Substitute \frac{-3\sqrt{5}-3}{2} for x in the equation x-\sqrt{9-3x}=0.
-3\times 5^{\frac{1}{2}}-3=0
Simplify. The value x=\frac{-3\sqrt{5}-3}{2} does not satisfy the equation.
\frac{3\sqrt{5}-3}{2}-\sqrt{9-3\times \frac{3\sqrt{5}-3}{2}}=0
Substitute \frac{3\sqrt{5}-3}{2} for x in the equation x-\sqrt{9-3x}=0.
0=0
Simplify. The value x=\frac{3\sqrt{5}-3}{2} satisfies the equation.
x=\frac{3\sqrt{5}-3}{2}
Equation \sqrt{9-3x}=x has a unique solution.