Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
-\sqrt{x^{2}-5}=2-x
Subtract x from both sides of the equation.
\left(-\sqrt{x^{2}-5}\right)^{2}=\left(2-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{x^{2}-5}\right)^{2}=\left(2-x\right)^{2}
Expand \left(-\sqrt{x^{2}-5}\right)^{2}.
1\left(\sqrt{x^{2}-5}\right)^{2}=\left(2-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(x^{2}-5\right)=\left(2-x\right)^{2}
Calculate \sqrt{x^{2}-5} to the power of 2 and get x^{2}-5.
x^{2}-5=\left(2-x\right)^{2}
Use the distributive property to multiply 1 by x^{2}-5.
x^{2}-5=4-4x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
x^{2}-5+4x=4+x^{2}
Add 4x to both sides.
x^{2}-5+4x-x^{2}=4
Subtract x^{2} from both sides.
-5+4x=4
Combine x^{2} and -x^{2} to get 0.
4x=4+5
Add 5 to both sides.
4x=9
Add 4 and 5 to get 9.
x=\frac{9}{4}
Divide both sides by 4.
\frac{9}{4}-\sqrt{\left(\frac{9}{4}\right)^{2}-5}=2
Substitute \frac{9}{4} for x in the equation x-\sqrt{x^{2}-5}=2.
2=2
Simplify. The value x=\frac{9}{4} satisfies the equation.
x=\frac{9}{4}
Equation -\sqrt{x^{2}-5}=2-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}