Solve for x
x = \frac{15}{7} = 2\frac{1}{7} \approx 2.142857143
Graph
Share
Copied to clipboard
15x-5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1}{3}-2x\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5.
15x-10x-5\times \frac{x-1}{5}=15-3\left(3x-\frac{1}{3}-2x\right)
Use the distributive property to multiply -5 by 2x+\frac{x-1}{5}.
15x-10x+\frac{-5\left(x-1\right)}{5}=15-3\left(3x-\frac{1}{3}-2x\right)
Express -5\times \frac{x-1}{5} as a single fraction.
15x-10x-\left(x-1\right)=15-3\left(3x-\frac{1}{3}-2x\right)
Cancel out 5 and 5.
15x-10x-x-\left(-1\right)=15-3\left(3x-\frac{1}{3}-2x\right)
To find the opposite of x-1, find the opposite of each term.
15x-10x-x+1=15-3\left(3x-\frac{1}{3}-2x\right)
The opposite of -1 is 1.
15x-11x+1=15-3\left(3x-\frac{1}{3}-2x\right)
Combine -10x and -x to get -11x.
4x+1=15-3\left(3x-\frac{1}{3}-2x\right)
Combine 15x and -11x to get 4x.
4x+1=15-3\left(x-\frac{1}{3}\right)
Combine 3x and -2x to get x.
4x+1=15-3x-3\left(-\frac{1}{3}\right)
Use the distributive property to multiply -3 by x-\frac{1}{3}.
4x+1=15-3x+1
Multiply -3 times -\frac{1}{3}.
4x+1=16-3x
Add 15 and 1 to get 16.
4x+1+3x=16
Add 3x to both sides.
7x+1=16
Combine 4x and 3x to get 7x.
7x=16-1
Subtract 1 from both sides.
7x=15
Subtract 1 from 16 to get 15.
x=\frac{15}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}