Evaluate
x-4
Expand
x-4
Share
Copied to clipboard
\frac{x\left(4y^{2}+9\right)}{4y^{2}+9}-\frac{18-8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4y^{2}+9}{4y^{2}+9}.
\frac{x\left(4y^{2}+9\right)-\left(18-8y^{2}\right)}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Since \frac{x\left(4y^{2}+9\right)}{4y^{2}+9} and \frac{18-8y^{2}}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Do the multiplications in x\left(4y^{2}+9\right)-\left(18-8y^{2}\right).
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y\left(4y^{2}+3\right)}{\left(4y^{2}+9\right)\times 2y}
Multiply \frac{12y}{4y^{2}+9} times \frac{4y^{2}+3}{2y} by multiplying numerator times numerator and denominator times denominator.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{6\left(4y^{2}+3\right)}{4y^{2}+9}
Cancel out 2y in both numerator and denominator.
\frac{4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right)}{4y^{2}+9}
Since \frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9} and \frac{6\left(4y^{2}+3\right)}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}-24y^{2}-18}{4y^{2}+9}
Do the multiplications in 4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right).
\frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}
Combine like terms in 4xy^{2}+9x-18+8y^{2}-24y^{2}-18.
\frac{\left(x-4\right)\left(4y^{2}+9\right)}{4y^{2}+9}
Factor the expressions that are not already factored in \frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}.
x-4
Cancel out 4y^{2}+9 in both numerator and denominator.
\frac{x\left(4y^{2}+9\right)}{4y^{2}+9}-\frac{18-8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4y^{2}+9}{4y^{2}+9}.
\frac{x\left(4y^{2}+9\right)-\left(18-8y^{2}\right)}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Since \frac{x\left(4y^{2}+9\right)}{4y^{2}+9} and \frac{18-8y^{2}}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Do the multiplications in x\left(4y^{2}+9\right)-\left(18-8y^{2}\right).
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y\left(4y^{2}+3\right)}{\left(4y^{2}+9\right)\times 2y}
Multiply \frac{12y}{4y^{2}+9} times \frac{4y^{2}+3}{2y} by multiplying numerator times numerator and denominator times denominator.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{6\left(4y^{2}+3\right)}{4y^{2}+9}
Cancel out 2y in both numerator and denominator.
\frac{4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right)}{4y^{2}+9}
Since \frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9} and \frac{6\left(4y^{2}+3\right)}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}-24y^{2}-18}{4y^{2}+9}
Do the multiplications in 4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right).
\frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}
Combine like terms in 4xy^{2}+9x-18+8y^{2}-24y^{2}-18.
\frac{\left(x-4\right)\left(4y^{2}+9\right)}{4y^{2}+9}
Factor the expressions that are not already factored in \frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}.
x-4
Cancel out 4y^{2}+9 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}