Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{x\left(4y^{2}+9\right)}{4y^{2}+9}-\frac{18-8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4y^{2}+9}{4y^{2}+9}.
\frac{x\left(4y^{2}+9\right)-\left(18-8y^{2}\right)}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Since \frac{x\left(4y^{2}+9\right)}{4y^{2}+9} and \frac{18-8y^{2}}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Do the multiplications in x\left(4y^{2}+9\right)-\left(18-8y^{2}\right).
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y\left(4y^{2}+3\right)}{\left(4y^{2}+9\right)\times 2y}
Multiply \frac{12y}{4y^{2}+9} times \frac{4y^{2}+3}{2y} by multiplying numerator times numerator and denominator times denominator.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{6\left(4y^{2}+3\right)}{4y^{2}+9}
Cancel out 2y in both numerator and denominator.
\frac{4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right)}{4y^{2}+9}
Since \frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9} and \frac{6\left(4y^{2}+3\right)}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}-24y^{2}-18}{4y^{2}+9}
Do the multiplications in 4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right).
\frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}
Combine like terms in 4xy^{2}+9x-18+8y^{2}-24y^{2}-18.
\frac{\left(x-4\right)\left(4y^{2}+9\right)}{4y^{2}+9}
Factor the expressions that are not already factored in \frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}.
x-4
Cancel out 4y^{2}+9 in both numerator and denominator.
\frac{x\left(4y^{2}+9\right)}{4y^{2}+9}-\frac{18-8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4y^{2}+9}{4y^{2}+9}.
\frac{x\left(4y^{2}+9\right)-\left(18-8y^{2}\right)}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Since \frac{x\left(4y^{2}+9\right)}{4y^{2}+9} and \frac{18-8y^{2}}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y}{4y^{2}+9}\times \frac{4y^{2}+3}{2y}
Do the multiplications in x\left(4y^{2}+9\right)-\left(18-8y^{2}\right).
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{12y\left(4y^{2}+3\right)}{\left(4y^{2}+9\right)\times 2y}
Multiply \frac{12y}{4y^{2}+9} times \frac{4y^{2}+3}{2y} by multiplying numerator times numerator and denominator times denominator.
\frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9}-\frac{6\left(4y^{2}+3\right)}{4y^{2}+9}
Cancel out 2y in both numerator and denominator.
\frac{4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right)}{4y^{2}+9}
Since \frac{4xy^{2}+9x-18+8y^{2}}{4y^{2}+9} and \frac{6\left(4y^{2}+3\right)}{4y^{2}+9} have the same denominator, subtract them by subtracting their numerators.
\frac{4xy^{2}+9x-18+8y^{2}-24y^{2}-18}{4y^{2}+9}
Do the multiplications in 4xy^{2}+9x-18+8y^{2}-6\left(4y^{2}+3\right).
\frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}
Combine like terms in 4xy^{2}+9x-18+8y^{2}-24y^{2}-18.
\frac{\left(x-4\right)\left(4y^{2}+9\right)}{4y^{2}+9}
Factor the expressions that are not already factored in \frac{4xy^{2}+9x-36-16y^{2}}{4y^{2}+9}.
x-4
Cancel out 4y^{2}+9 in both numerator and denominator.