Solve for x
x=0
Graph
Share
Copied to clipboard
x-\frac{1}{3}\left(x-\frac{1}{3}x-\frac{1}{3}\left(-9\right)\right)=\frac{1}{9}\left(x-9\right)
Use the distributive property to multiply -\frac{1}{3} by x-9.
x-\frac{1}{3}\left(x-\frac{1}{3}x+\frac{-\left(-9\right)}{3}\right)=\frac{1}{9}\left(x-9\right)
Express -\frac{1}{3}\left(-9\right) as a single fraction.
x-\frac{1}{3}\left(x-\frac{1}{3}x+\frac{9}{3}\right)=\frac{1}{9}\left(x-9\right)
Multiply -1 and -9 to get 9.
x-\frac{1}{3}\left(x-\frac{1}{3}x+3\right)=\frac{1}{9}\left(x-9\right)
Divide 9 by 3 to get 3.
x-\frac{1}{3}\left(\frac{2}{3}x+3\right)=\frac{1}{9}\left(x-9\right)
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
x-\frac{1}{3}\times \frac{2}{3}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-9\right)
Use the distributive property to multiply -\frac{1}{3} by \frac{2}{3}x+3.
x+\frac{-2}{3\times 3}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-9\right)
Multiply -\frac{1}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x+\frac{-2}{9}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-9\right)
Do the multiplications in the fraction \frac{-2}{3\times 3}.
x-\frac{2}{9}x-\frac{1}{3}\times 3=\frac{1}{9}\left(x-9\right)
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
x-\frac{2}{9}x-1=\frac{1}{9}\left(x-9\right)
Cancel out 3 and 3.
\frac{7}{9}x-1=\frac{1}{9}\left(x-9\right)
Combine x and -\frac{2}{9}x to get \frac{7}{9}x.
\frac{7}{9}x-1=\frac{1}{9}x+\frac{1}{9}\left(-9\right)
Use the distributive property to multiply \frac{1}{9} by x-9.
\frac{7}{9}x-1=\frac{1}{9}x+\frac{-9}{9}
Multiply \frac{1}{9} and -9 to get \frac{-9}{9}.
\frac{7}{9}x-1=\frac{1}{9}x-1
Divide -9 by 9 to get -1.
\frac{7}{9}x-1-\frac{1}{9}x=-1
Subtract \frac{1}{9}x from both sides.
\frac{2}{3}x-1=-1
Combine \frac{7}{9}x and -\frac{1}{9}x to get \frac{2}{3}x.
\frac{2}{3}x=-1+1
Add 1 to both sides.
\frac{2}{3}x=0
Add -1 and 1 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since \frac{2}{3} is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}