Solve for x
x=\frac{3y}{2}+7
Solve for y
y=\frac{2\left(x-7\right)}{3}
Graph
Share
Copied to clipboard
xy-2x-y\left(x-3\right)=-14
Use the distributive property to multiply x by y-2.
xy-2x-\left(yx-3y\right)=-14
Use the distributive property to multiply y by x-3.
xy-2x-yx+3y=-14
To find the opposite of yx-3y, find the opposite of each term.
-2x+3y=-14
Combine xy and -yx to get 0.
-2x=-14-3y
Subtract 3y from both sides.
-2x=-3y-14
The equation is in standard form.
\frac{-2x}{-2}=\frac{-3y-14}{-2}
Divide both sides by -2.
x=\frac{-3y-14}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{3y}{2}+7
Divide -14-3y by -2.
xy-2x-y\left(x-3\right)=-14
Use the distributive property to multiply x by y-2.
xy-2x-\left(yx-3y\right)=-14
Use the distributive property to multiply y by x-3.
xy-2x-yx+3y=-14
To find the opposite of yx-3y, find the opposite of each term.
-2x+3y=-14
Combine xy and -yx to get 0.
3y=-14+2x
Add 2x to both sides.
3y=2x-14
The equation is in standard form.
\frac{3y}{3}=\frac{2x-14}{3}
Divide both sides by 3.
y=\frac{2x-14}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}