Solve for x (complex solution)
x=3\sqrt{2}+\sqrt{47}i\approx 4.242640687+6.8556546i
x=-\sqrt{47}i+3\sqrt{2}\approx 4.242640687-6.8556546i
Graph
Share
Copied to clipboard
x^{2}-6x\sqrt{2}+65=0
Use the distributive property to multiply x by x-6\sqrt{2}.
x^{2}+\left(-6\sqrt{2}\right)x+65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{\left(-6\sqrt{2}\right)^{2}-4\times 65}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6\sqrt{2} for b, and 65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-4\times 65}}{2}
Square -6\sqrt{2}.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{72-260}}{2}
Multiply -4 times 65.
x=\frac{-\left(-6\sqrt{2}\right)±\sqrt{-188}}{2}
Add 72 to -260.
x=\frac{-\left(-6\sqrt{2}\right)±2\sqrt{47}i}{2}
Take the square root of -188.
x=\frac{6\sqrt{2}±2\sqrt{47}i}{2}
The opposite of -6\sqrt{2} is 6\sqrt{2}.
x=\frac{6\sqrt{2}+2\sqrt{47}i}{2}
Now solve the equation x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} when ± is plus. Add 6\sqrt{2} to 2i\sqrt{47}.
x=3\sqrt{2}+\sqrt{47}i
Divide 6\sqrt{2}+2i\sqrt{47} by 2.
x=\frac{-2\sqrt{47}i+6\sqrt{2}}{2}
Now solve the equation x=\frac{6\sqrt{2}±2\sqrt{47}i}{2} when ± is minus. Subtract 2i\sqrt{47} from 6\sqrt{2}.
x=-\sqrt{47}i+3\sqrt{2}
Divide 6\sqrt{2}-2i\sqrt{47} by 2.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
The equation is now solved.
x^{2}-6x\sqrt{2}+65=0
Use the distributive property to multiply x by x-6\sqrt{2}.
x^{2}-6x\sqrt{2}=-65
Subtract 65 from both sides. Anything subtracted from zero gives its negation.
x^{2}+\left(-6\sqrt{2}\right)x=-65
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\left(-6\sqrt{2}\right)x+\left(-3\sqrt{2}\right)^{2}=-65+\left(-3\sqrt{2}\right)^{2}
Divide -6\sqrt{2}, the coefficient of the x term, by 2 to get -3\sqrt{2}. Then add the square of -3\sqrt{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-6\sqrt{2}\right)x+18=-65+18
Square -3\sqrt{2}.
x^{2}+\left(-6\sqrt{2}\right)x+18=-47
Add -65 to 18.
\left(x-3\sqrt{2}\right)^{2}=-47
Factor x^{2}+\left(-6\sqrt{2}\right)x+18. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\sqrt{2}\right)^{2}}=\sqrt{-47}
Take the square root of both sides of the equation.
x-3\sqrt{2}=\sqrt{47}i x-3\sqrt{2}=-\sqrt{47}i
Simplify.
x=3\sqrt{2}+\sqrt{47}i x=-\sqrt{47}i+3\sqrt{2}
Add 3\sqrt{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}