Evaluate
4x^{3}+4x^{2}-6x+6
Expand
4x^{3}+4x^{2}-6x+6
Graph
Share
Copied to clipboard
\left(4x^{2}-x\right)\left(x+1\right)-\left(-x+3\right)\left(x-2\right)
Use the distributive property to multiply x by 4x-1.
4x^{3}+4x^{2}-x^{2}-x-\left(-x+3\right)\left(x-2\right)
Apply the distributive property by multiplying each term of 4x^{2}-x by each term of x+1.
4x^{3}+3x^{2}-x-\left(-x+3\right)\left(x-2\right)
Combine 4x^{2} and -x^{2} to get 3x^{2}.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x-2\left(-x\right)+3x-6\right)
Apply the distributive property by multiplying each term of -x+3 by each term of x-2.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x+2x+3x-6\right)
Multiply -2 and -1 to get 2.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x+5x-6\right)
Combine 2x and 3x to get 5x.
4x^{3}+3x^{2}-x-\left(-x\right)x-5x-\left(-6\right)
To find the opposite of \left(-x\right)x+5x-6, find the opposite of each term.
4x^{3}+3x^{2}-x+xx-5x-\left(-6\right)
Multiply -1 and -1 to get 1.
4x^{3}+3x^{2}-x+x^{2}-5x-\left(-6\right)
Multiply x and x to get x^{2}.
4x^{3}+4x^{2}-x-5x-\left(-6\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{3}+4x^{2}-6x-\left(-6\right)
Combine -x and -5x to get -6x.
4x^{3}+4x^{2}-6x+6
The opposite of -6 is 6.
\left(4x^{2}-x\right)\left(x+1\right)-\left(-x+3\right)\left(x-2\right)
Use the distributive property to multiply x by 4x-1.
4x^{3}+4x^{2}-x^{2}-x-\left(-x+3\right)\left(x-2\right)
Apply the distributive property by multiplying each term of 4x^{2}-x by each term of x+1.
4x^{3}+3x^{2}-x-\left(-x+3\right)\left(x-2\right)
Combine 4x^{2} and -x^{2} to get 3x^{2}.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x-2\left(-x\right)+3x-6\right)
Apply the distributive property by multiplying each term of -x+3 by each term of x-2.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x+2x+3x-6\right)
Multiply -2 and -1 to get 2.
4x^{3}+3x^{2}-x-\left(\left(-x\right)x+5x-6\right)
Combine 2x and 3x to get 5x.
4x^{3}+3x^{2}-x-\left(-x\right)x-5x-\left(-6\right)
To find the opposite of \left(-x\right)x+5x-6, find the opposite of each term.
4x^{3}+3x^{2}-x+xx-5x-\left(-6\right)
Multiply -1 and -1 to get 1.
4x^{3}+3x^{2}-x+x^{2}-5x-\left(-6\right)
Multiply x and x to get x^{2}.
4x^{3}+4x^{2}-x-5x-\left(-6\right)
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{3}+4x^{2}-6x-\left(-6\right)
Combine -x and -5x to get -6x.
4x^{3}+4x^{2}-6x+6
The opposite of -6 is 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}