Solve for x
x=4
x = \frac{23}{15} = 1\frac{8}{15} \approx 1.533333333
Graph
Share
Copied to clipboard
15x^{2}-23x-4\left(15x-23\right)=0
Use the distributive property to multiply x by 15x-23.
15x^{2}-23x-60x+92=0
Use the distributive property to multiply -4 by 15x-23.
15x^{2}-83x+92=0
Combine -23x and -60x to get -83x.
x=\frac{-\left(-83\right)±\sqrt{\left(-83\right)^{2}-4\times 15\times 92}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -83 for b, and 92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-83\right)±\sqrt{6889-4\times 15\times 92}}{2\times 15}
Square -83.
x=\frac{-\left(-83\right)±\sqrt{6889-60\times 92}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-83\right)±\sqrt{6889-5520}}{2\times 15}
Multiply -60 times 92.
x=\frac{-\left(-83\right)±\sqrt{1369}}{2\times 15}
Add 6889 to -5520.
x=\frac{-\left(-83\right)±37}{2\times 15}
Take the square root of 1369.
x=\frac{83±37}{2\times 15}
The opposite of -83 is 83.
x=\frac{83±37}{30}
Multiply 2 times 15.
x=\frac{120}{30}
Now solve the equation x=\frac{83±37}{30} when ± is plus. Add 83 to 37.
x=4
Divide 120 by 30.
x=\frac{46}{30}
Now solve the equation x=\frac{83±37}{30} when ± is minus. Subtract 37 from 83.
x=\frac{23}{15}
Reduce the fraction \frac{46}{30} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{23}{15}
The equation is now solved.
15x^{2}-23x-4\left(15x-23\right)=0
Use the distributive property to multiply x by 15x-23.
15x^{2}-23x-60x+92=0
Use the distributive property to multiply -4 by 15x-23.
15x^{2}-83x+92=0
Combine -23x and -60x to get -83x.
15x^{2}-83x=-92
Subtract 92 from both sides. Anything subtracted from zero gives its negation.
\frac{15x^{2}-83x}{15}=-\frac{92}{15}
Divide both sides by 15.
x^{2}-\frac{83}{15}x=-\frac{92}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{83}{15}x+\left(-\frac{83}{30}\right)^{2}=-\frac{92}{15}+\left(-\frac{83}{30}\right)^{2}
Divide -\frac{83}{15}, the coefficient of the x term, by 2 to get -\frac{83}{30}. Then add the square of -\frac{83}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{83}{15}x+\frac{6889}{900}=-\frac{92}{15}+\frac{6889}{900}
Square -\frac{83}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{83}{15}x+\frac{6889}{900}=\frac{1369}{900}
Add -\frac{92}{15} to \frac{6889}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{83}{30}\right)^{2}=\frac{1369}{900}
Factor x^{2}-\frac{83}{15}x+\frac{6889}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{83}{30}\right)^{2}}=\sqrt{\frac{1369}{900}}
Take the square root of both sides of the equation.
x-\frac{83}{30}=\frac{37}{30} x-\frac{83}{30}=-\frac{37}{30}
Simplify.
x=4 x=\frac{23}{15}
Add \frac{83}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}