Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(1+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x\left(\frac{5}{5}+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Convert 1 to fraction \frac{5}{5}.
x\times \frac{5+1}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
x\times \frac{6}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Add 5 and 1 to get 6.
x\times \frac{6}{5}\times \frac{9}{10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
x\times \frac{6\times 9}{5\times 10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Multiply \frac{6}{5} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{54}{50}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Do the multiplications in the fraction \frac{6\times 9}{5\times 10}.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{54}{50} to lowest terms by extracting and canceling out 2.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{3}{20}\right)\times 9
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{27}{25}+\left(2200-x\right)\left(\frac{20}{20}+\frac{3}{20}\right)\times 9
Convert 1 to fraction \frac{20}{20}.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{20+3}{20}\times 9
Since \frac{20}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23}{20}\times 9
Add 20 and 3 to get 23.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23\times 9}{20}
Express \frac{23}{20}\times 9 as a single fraction.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{207}{20}
Multiply 23 and 9 to get 207.
x\times \frac{27}{25}+2200\times \frac{207}{20}-x\times \frac{207}{20}
Use the distributive property to multiply 2200-x by \frac{207}{20}.
x\times \frac{27}{25}+\frac{2200\times 207}{20}-x\times \frac{207}{20}
Express 2200\times \frac{207}{20} as a single fraction.
x\times \frac{27}{25}+\frac{455400}{20}-x\times \frac{207}{20}
Multiply 2200 and 207 to get 455400.
x\times \frac{27}{25}+22770-x\times \frac{207}{20}
Divide 455400 by 20 to get 22770.
x\times \frac{27}{25}+22770-\frac{207}{20}x
Multiply -1 and \frac{207}{20} to get -\frac{207}{20}.
-\frac{927}{100}x+22770
Combine x\times \frac{27}{25} and -\frac{207}{20}x to get -\frac{927}{100}x.
x\left(1+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x\left(\frac{5}{5}+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Convert 1 to fraction \frac{5}{5}.
x\times \frac{5+1}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
x\times \frac{6}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Add 5 and 1 to get 6.
x\times \frac{6}{5}\times \frac{9}{10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
x\times \frac{6\times 9}{5\times 10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Multiply \frac{6}{5} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{54}{50}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Do the multiplications in the fraction \frac{6\times 9}{5\times 10}.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{54}{50} to lowest terms by extracting and canceling out 2.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{3}{20}\right)\times 9
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{27}{25}+\left(2200-x\right)\left(\frac{20}{20}+\frac{3}{20}\right)\times 9
Convert 1 to fraction \frac{20}{20}.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{20+3}{20}\times 9
Since \frac{20}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23}{20}\times 9
Add 20 and 3 to get 23.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23\times 9}{20}
Express \frac{23}{20}\times 9 as a single fraction.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{207}{20}
Multiply 23 and 9 to get 207.
x\times \frac{27}{25}+2200\times \frac{207}{20}-x\times \frac{207}{20}
Use the distributive property to multiply 2200-x by \frac{207}{20}.
x\times \frac{27}{25}+\frac{2200\times 207}{20}-x\times \frac{207}{20}
Express 2200\times \frac{207}{20} as a single fraction.
x\times \frac{27}{25}+\frac{455400}{20}-x\times \frac{207}{20}
Multiply 2200 and 207 to get 455400.
x\times \frac{27}{25}+22770-x\times \frac{207}{20}
Divide 455400 by 20 to get 22770.
x\times \frac{27}{25}+22770-\frac{207}{20}x
Multiply -1 and \frac{207}{20} to get -\frac{207}{20}.
-\frac{927}{100}x+22770
Combine x\times \frac{27}{25} and -\frac{207}{20}x to get -\frac{927}{100}x.