x(1+20 \% ) \times 90 \% +(2200-x)(1+15 \% ) \times 9. \% -2200=131
Evaluate
-\frac{927x}{100}+22770
Expand
-\frac{927x}{100}+22770
Graph
Quiz
Algebra
5 problems similar to:
x(1+20 \% ) \times 90 \% +(2200-x)(1+15 \% ) \times 9. \% -2200=131
Share
Copied to clipboard
x\left(1+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x\left(\frac{5}{5}+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Convert 1 to fraction \frac{5}{5}.
x\times \frac{5+1}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
x\times \frac{6}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Add 5 and 1 to get 6.
x\times \frac{6}{5}\times \frac{9}{10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
x\times \frac{6\times 9}{5\times 10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Multiply \frac{6}{5} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{54}{50}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Do the multiplications in the fraction \frac{6\times 9}{5\times 10}.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{54}{50} to lowest terms by extracting and canceling out 2.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{3}{20}\right)\times 9
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{27}{25}+\left(2200-x\right)\left(\frac{20}{20}+\frac{3}{20}\right)\times 9
Convert 1 to fraction \frac{20}{20}.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{20+3}{20}\times 9
Since \frac{20}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23}{20}\times 9
Add 20 and 3 to get 23.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23\times 9}{20}
Express \frac{23}{20}\times 9 as a single fraction.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{207}{20}
Multiply 23 and 9 to get 207.
x\times \frac{27}{25}+2200\times \frac{207}{20}-x\times \frac{207}{20}
Use the distributive property to multiply 2200-x by \frac{207}{20}.
x\times \frac{27}{25}+\frac{2200\times 207}{20}-x\times \frac{207}{20}
Express 2200\times \frac{207}{20} as a single fraction.
x\times \frac{27}{25}+\frac{455400}{20}-x\times \frac{207}{20}
Multiply 2200 and 207 to get 455400.
x\times \frac{27}{25}+22770-x\times \frac{207}{20}
Divide 455400 by 20 to get 22770.
x\times \frac{27}{25}+22770-\frac{207}{20}x
Multiply -1 and \frac{207}{20} to get -\frac{207}{20}.
-\frac{927}{100}x+22770
Combine x\times \frac{27}{25} and -\frac{207}{20}x to get -\frac{927}{100}x.
x\left(1+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x\left(\frac{5}{5}+\frac{1}{5}\right)\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Convert 1 to fraction \frac{5}{5}.
x\times \frac{5+1}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
x\times \frac{6}{5}\times \frac{90}{100}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Add 5 and 1 to get 6.
x\times \frac{6}{5}\times \frac{9}{10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
x\times \frac{6\times 9}{5\times 10}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Multiply \frac{6}{5} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{54}{50}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Do the multiplications in the fraction \frac{6\times 9}{5\times 10}.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{15}{100}\right)\times 9
Reduce the fraction \frac{54}{50} to lowest terms by extracting and canceling out 2.
x\times \frac{27}{25}+\left(2200-x\right)\left(1+\frac{3}{20}\right)\times 9
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
x\times \frac{27}{25}+\left(2200-x\right)\left(\frac{20}{20}+\frac{3}{20}\right)\times 9
Convert 1 to fraction \frac{20}{20}.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{20+3}{20}\times 9
Since \frac{20}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23}{20}\times 9
Add 20 and 3 to get 23.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{23\times 9}{20}
Express \frac{23}{20}\times 9 as a single fraction.
x\times \frac{27}{25}+\left(2200-x\right)\times \frac{207}{20}
Multiply 23 and 9 to get 207.
x\times \frac{27}{25}+2200\times \frac{207}{20}-x\times \frac{207}{20}
Use the distributive property to multiply 2200-x by \frac{207}{20}.
x\times \frac{27}{25}+\frac{2200\times 207}{20}-x\times \frac{207}{20}
Express 2200\times \frac{207}{20} as a single fraction.
x\times \frac{27}{25}+\frac{455400}{20}-x\times \frac{207}{20}
Multiply 2200 and 207 to get 455400.
x\times \frac{27}{25}+22770-x\times \frac{207}{20}
Divide 455400 by 20 to get 22770.
x\times \frac{27}{25}+22770-\frac{207}{20}x
Multiply -1 and \frac{207}{20} to get -\frac{207}{20}.
-\frac{927}{100}x+22770
Combine x\times \frac{27}{25} and -\frac{207}{20}x to get -\frac{927}{100}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}