Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{ez}{2}+\frac{x}{z}\text{, }&z\neq 0\\y\in \mathrm{C}\text{, }&x=0\text{ and }z=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{ez}{2}+\frac{x}{z}\text{, }&z\neq 0\\y\in \mathrm{R}\text{, }&x=0\text{ and }z=0\end{matrix}\right.
Solve for x
x=\frac{z\left(2y+ez\right)}{2}
Share
Copied to clipboard
yz+\frac{ez^{2}}{2}=x
Swap sides so that all variable terms are on the left hand side.
yz=x-\frac{ez^{2}}{2}
Subtract \frac{ez^{2}}{2} from both sides.
2yz=2x-ez^{2}
Multiply both sides of the equation by 2.
2zy=2x-ez^{2}
The equation is in standard form.
\frac{2zy}{2z}=\frac{2x-ez^{2}}{2z}
Divide both sides by 2z.
y=\frac{2x-ez^{2}}{2z}
Dividing by 2z undoes the multiplication by 2z.
y=-\frac{ez}{2}+\frac{x}{z}
Divide 2x-ez^{2} by 2z.
yz+\frac{ez^{2}}{2}=x
Swap sides so that all variable terms are on the left hand side.
yz=x-\frac{ez^{2}}{2}
Subtract \frac{ez^{2}}{2} from both sides.
2yz=2x-ez^{2}
Multiply both sides of the equation by 2.
2zy=2x-ez^{2}
The equation is in standard form.
\frac{2zy}{2z}=\frac{2x-ez^{2}}{2z}
Divide both sides by 2z.
y=\frac{2x-ez^{2}}{2z}
Dividing by 2z undoes the multiplication by 2z.
y=-\frac{ez}{2}+\frac{x}{z}
Divide 2x-ez^{2} by 2z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}