Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-9x^{2}=-3x-1
Subtract 9x^{2} from both sides.
x-9x^{2}+3x=-1
Add 3x to both sides.
4x-9x^{2}=-1
Combine x and 3x to get 4x.
4x-9x^{2}+1=0
Add 1 to both sides.
-9x^{2}+4x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-9\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-9\right)}}{2\left(-9\right)}
Square 4.
x=\frac{-4±\sqrt{16+36}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-4±\sqrt{52}}{2\left(-9\right)}
Add 16 to 36.
x=\frac{-4±2\sqrt{13}}{2\left(-9\right)}
Take the square root of 52.
x=\frac{-4±2\sqrt{13}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{13}-4}{-18}
Now solve the equation x=\frac{-4±2\sqrt{13}}{-18} when ± is plus. Add -4 to 2\sqrt{13}.
x=\frac{2-\sqrt{13}}{9}
Divide -4+2\sqrt{13} by -18.
x=\frac{-2\sqrt{13}-4}{-18}
Now solve the equation x=\frac{-4±2\sqrt{13}}{-18} when ± is minus. Subtract 2\sqrt{13} from -4.
x=\frac{\sqrt{13}+2}{9}
Divide -4-2\sqrt{13} by -18.
x=\frac{2-\sqrt{13}}{9} x=\frac{\sqrt{13}+2}{9}
The equation is now solved.
x-9x^{2}=-3x-1
Subtract 9x^{2} from both sides.
x-9x^{2}+3x=-1
Add 3x to both sides.
4x-9x^{2}=-1
Combine x and 3x to get 4x.
-9x^{2}+4x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+4x}{-9}=-\frac{1}{-9}
Divide both sides by -9.
x^{2}+\frac{4}{-9}x=-\frac{1}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{4}{9}x=-\frac{1}{-9}
Divide 4 by -9.
x^{2}-\frac{4}{9}x=\frac{1}{9}
Divide -1 by -9.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=\frac{1}{9}+\left(-\frac{2}{9}\right)^{2}
Divide -\frac{4}{9}, the coefficient of the x term, by 2 to get -\frac{2}{9}. Then add the square of -\frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{1}{9}+\frac{4}{81}
Square -\frac{2}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{13}{81}
Add \frac{1}{9} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{9}\right)^{2}=\frac{13}{81}
Factor x^{2}-\frac{4}{9}x+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{\frac{13}{81}}
Take the square root of both sides of the equation.
x-\frac{2}{9}=\frac{\sqrt{13}}{9} x-\frac{2}{9}=-\frac{\sqrt{13}}{9}
Simplify.
x=\frac{\sqrt{13}+2}{9} x=\frac{2-\sqrt{13}}{9}
Add \frac{2}{9} to both sides of the equation.