Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+6=5\sqrt{x}
Subtract -6 from both sides of the equation.
\left(x+6\right)^{2}=\left(5\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+12x+36=\left(5\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36=5^{2}\left(\sqrt{x}\right)^{2}
Expand \left(5\sqrt{x}\right)^{2}.
x^{2}+12x+36=25\left(\sqrt{x}\right)^{2}
Calculate 5 to the power of 2 and get 25.
x^{2}+12x+36=25x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+12x+36-25x=0
Subtract 25x from both sides.
x^{2}-13x+36=0
Combine 12x and -25x to get -13x.
a+b=-13 ab=36
To solve the equation, factor x^{2}-13x+36 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-9 b=-4
The solution is the pair that gives sum -13.
\left(x-9\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=9 x=4
To find equation solutions, solve x-9=0 and x-4=0.
9=5\sqrt{9}-6
Substitute 9 for x in the equation x=5\sqrt{x}-6.
9=9
Simplify. The value x=9 satisfies the equation.
4=5\sqrt{4}-6
Substitute 4 for x in the equation x=5\sqrt{x}-6.
4=4
Simplify. The value x=4 satisfies the equation.
x=9 x=4
List all solutions of x+6=5\sqrt{x}.