Skip to main content
Solve for x
Tick mark Image
Graph

Share

x^{2}=\left(42\sqrt{\frac{41}{100}x\times 0.125x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(42\sqrt{\frac{41}{100}x^{2}\times 0.125}\right)^{2}
Multiply x and x to get x^{2}.
x^{2}=\left(42\sqrt{\frac{41}{100}x^{2}\times \frac{1}{8}}\right)^{2}
Convert decimal number 0.125 to fraction \frac{125}{1000}. Reduce the fraction \frac{125}{1000} to lowest terms by extracting and canceling out 125.
x^{2}=\left(42\sqrt{\frac{41\times 1}{100\times 8}x^{2}}\right)^{2}
Multiply \frac{41}{100} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
x^{2}=\left(42\sqrt{\frac{41}{800}x^{2}}\right)^{2}
Do the multiplications in the fraction \frac{41\times 1}{100\times 8}.
x^{2}=42^{2}\left(\sqrt{\frac{41}{800}x^{2}}\right)^{2}
Expand \left(42\sqrt{\frac{41}{800}x^{2}}\right)^{2}.
x^{2}=1764\left(\sqrt{\frac{41}{800}x^{2}}\right)^{2}
Calculate 42 to the power of 2 and get 1764.
x^{2}=1764\times \frac{41}{800}x^{2}
Calculate \sqrt{\frac{41}{800}x^{2}} to the power of 2 and get \frac{41}{800}x^{2}.
x^{2}=\frac{1764\times 41}{800}x^{2}
Express 1764\times \frac{41}{800} as a single fraction.
x^{2}=\frac{72324}{800}x^{2}
Multiply 1764 and 41 to get 72324.
x^{2}=\frac{18081}{200}x^{2}
Reduce the fraction \frac{72324}{800} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{18081}{200}x^{2}=0
Subtract \frac{18081}{200}x^{2} from both sides.
-\frac{17881}{200}x^{2}=0
Combine x^{2} and -\frac{18081}{200}x^{2} to get -\frac{17881}{200}x^{2}.
x^{2}=0
Multiply both sides by -\frac{200}{17881}, the reciprocal of -\frac{17881}{200}. Anything times zero gives zero.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
0=42\sqrt{\frac{41}{100}\times 0\times 0.125\times 0}
Substitute 0 for x in the equation x=42\sqrt{\frac{41}{100}x\times 0.125x}.
0=0
Simplify. The value x=0 satisfies the equation.
x=0
Equation x=42\sqrt{\frac{5.125x^{2}}{100}} has a unique solution.