Solve for x
x = \frac{2 \sqrt{1066231} - 1268}{17} \approx 46.89230838
x=\frac{-2\sqrt{1066231}-1268}{17}\approx -196.068778968
Graph
Share
Copied to clipboard
x-4.25x^{2}=635x-39075
Subtract 4.25x^{2} from both sides.
x-4.25x^{2}-635x=-39075
Subtract 635x from both sides.
-634x-4.25x^{2}=-39075
Combine x and -635x to get -634x.
-634x-4.25x^{2}+39075=0
Add 39075 to both sides.
-4.25x^{2}-634x+39075=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-634\right)±\sqrt{\left(-634\right)^{2}-4\left(-4.25\right)\times 39075}}{2\left(-4.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.25 for a, -634 for b, and 39075 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-634\right)±\sqrt{401956-4\left(-4.25\right)\times 39075}}{2\left(-4.25\right)}
Square -634.
x=\frac{-\left(-634\right)±\sqrt{401956+17\times 39075}}{2\left(-4.25\right)}
Multiply -4 times -4.25.
x=\frac{-\left(-634\right)±\sqrt{401956+664275}}{2\left(-4.25\right)}
Multiply 17 times 39075.
x=\frac{-\left(-634\right)±\sqrt{1066231}}{2\left(-4.25\right)}
Add 401956 to 664275.
x=\frac{634±\sqrt{1066231}}{2\left(-4.25\right)}
The opposite of -634 is 634.
x=\frac{634±\sqrt{1066231}}{-8.5}
Multiply 2 times -4.25.
x=\frac{\sqrt{1066231}+634}{-8.5}
Now solve the equation x=\frac{634±\sqrt{1066231}}{-8.5} when ± is plus. Add 634 to \sqrt{1066231}.
x=\frac{-2\sqrt{1066231}-1268}{17}
Divide 634+\sqrt{1066231} by -8.5 by multiplying 634+\sqrt{1066231} by the reciprocal of -8.5.
x=\frac{634-\sqrt{1066231}}{-8.5}
Now solve the equation x=\frac{634±\sqrt{1066231}}{-8.5} when ± is minus. Subtract \sqrt{1066231} from 634.
x=\frac{2\sqrt{1066231}-1268}{17}
Divide 634-\sqrt{1066231} by -8.5 by multiplying 634-\sqrt{1066231} by the reciprocal of -8.5.
x=\frac{-2\sqrt{1066231}-1268}{17} x=\frac{2\sqrt{1066231}-1268}{17}
The equation is now solved.
x-4.25x^{2}=635x-39075
Subtract 4.25x^{2} from both sides.
x-4.25x^{2}-635x=-39075
Subtract 635x from both sides.
-634x-4.25x^{2}=-39075
Combine x and -635x to get -634x.
-4.25x^{2}-634x=-39075
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4.25x^{2}-634x}{-4.25}=-\frac{39075}{-4.25}
Divide both sides of the equation by -4.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{634}{-4.25}\right)x=-\frac{39075}{-4.25}
Dividing by -4.25 undoes the multiplication by -4.25.
x^{2}+\frac{2536}{17}x=-\frac{39075}{-4.25}
Divide -634 by -4.25 by multiplying -634 by the reciprocal of -4.25.
x^{2}+\frac{2536}{17}x=\frac{156300}{17}
Divide -39075 by -4.25 by multiplying -39075 by the reciprocal of -4.25.
x^{2}+\frac{2536}{17}x+\frac{1268}{17}^{2}=\frac{156300}{17}+\frac{1268}{17}^{2}
Divide \frac{2536}{17}, the coefficient of the x term, by 2 to get \frac{1268}{17}. Then add the square of \frac{1268}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2536}{17}x+\frac{1607824}{289}=\frac{156300}{17}+\frac{1607824}{289}
Square \frac{1268}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2536}{17}x+\frac{1607824}{289}=\frac{4264924}{289}
Add \frac{156300}{17} to \frac{1607824}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1268}{17}\right)^{2}=\frac{4264924}{289}
Factor x^{2}+\frac{2536}{17}x+\frac{1607824}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1268}{17}\right)^{2}}=\sqrt{\frac{4264924}{289}}
Take the square root of both sides of the equation.
x+\frac{1268}{17}=\frac{2\sqrt{1066231}}{17} x+\frac{1268}{17}=-\frac{2\sqrt{1066231}}{17}
Simplify.
x=\frac{2\sqrt{1066231}-1268}{17} x=\frac{-2\sqrt{1066231}-1268}{17}
Subtract \frac{1268}{17} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}