Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-4x^{2}=5x-4
Subtract 4x^{2} from both sides.
x-4x^{2}-5x=-4
Subtract 5x from both sides.
-4x-4x^{2}=-4
Combine x and -5x to get -4x.
-4x-4x^{2}+4=0
Add 4 to both sides.
-4x^{2}-4x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)\times 4}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)\times 4}}{2\left(-4\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+16\times 4}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2\left(-4\right)}
Multiply 16 times 4.
x=\frac{-\left(-4\right)±\sqrt{80}}{2\left(-4\right)}
Add 16 to 64.
x=\frac{-\left(-4\right)±4\sqrt{5}}{2\left(-4\right)}
Take the square root of 80.
x=\frac{4±4\sqrt{5}}{2\left(-4\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{5}+4}{-8}
Now solve the equation x=\frac{4±4\sqrt{5}}{-8} when ± is plus. Add 4 to 4\sqrt{5}.
x=\frac{-\sqrt{5}-1}{2}
Divide 4+4\sqrt{5} by -8.
x=\frac{4-4\sqrt{5}}{-8}
Now solve the equation x=\frac{4±4\sqrt{5}}{-8} when ± is minus. Subtract 4\sqrt{5} from 4.
x=\frac{\sqrt{5}-1}{2}
Divide 4-4\sqrt{5} by -8.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
The equation is now solved.
x-4x^{2}=5x-4
Subtract 4x^{2} from both sides.
x-4x^{2}-5x=-4
Subtract 5x from both sides.
-4x-4x^{2}=-4
Combine x and -5x to get -4x.
-4x^{2}-4x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-4x}{-4}=-\frac{4}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{4}{-4}\right)x=-\frac{4}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+x=-\frac{4}{-4}
Divide -4 by -4.
x^{2}+x=1
Divide -4 by -4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{5}}{2} x+\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}-1}{2} x=\frac{-\sqrt{5}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.