Solve for x
x = \frac{\sqrt{273} - 1}{8} \approx 1.940338955
x=\frac{-\sqrt{273}-1}{8}\approx -2.190338955
Graph
Share
Copied to clipboard
x-4x^{2}=2x-17
Subtract 4x^{2} from both sides.
x-4x^{2}-2x=-17
Subtract 2x from both sides.
-x-4x^{2}=-17
Combine x and -2x to get -x.
-x-4x^{2}+17=0
Add 17 to both sides.
-4x^{2}-x+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-4\right)\times 17}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -1 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+16\times 17}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-1\right)±\sqrt{1+272}}{2\left(-4\right)}
Multiply 16 times 17.
x=\frac{-\left(-1\right)±\sqrt{273}}{2\left(-4\right)}
Add 1 to 272.
x=\frac{1±\sqrt{273}}{2\left(-4\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{273}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{273}+1}{-8}
Now solve the equation x=\frac{1±\sqrt{273}}{-8} when ± is plus. Add 1 to \sqrt{273}.
x=\frac{-\sqrt{273}-1}{8}
Divide 1+\sqrt{273} by -8.
x=\frac{1-\sqrt{273}}{-8}
Now solve the equation x=\frac{1±\sqrt{273}}{-8} when ± is minus. Subtract \sqrt{273} from 1.
x=\frac{\sqrt{273}-1}{8}
Divide 1-\sqrt{273} by -8.
x=\frac{-\sqrt{273}-1}{8} x=\frac{\sqrt{273}-1}{8}
The equation is now solved.
x-4x^{2}=2x-17
Subtract 4x^{2} from both sides.
x-4x^{2}-2x=-17
Subtract 2x from both sides.
-x-4x^{2}=-17
Combine x and -2x to get -x.
-4x^{2}-x=-17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-x}{-4}=-\frac{17}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{1}{-4}\right)x=-\frac{17}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{1}{4}x=-\frac{17}{-4}
Divide -1 by -4.
x^{2}+\frac{1}{4}x=\frac{17}{4}
Divide -17 by -4.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{17}{4}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{17}{4}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{273}{64}
Add \frac{17}{4} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{273}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{273}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{273}}{8} x+\frac{1}{8}=-\frac{\sqrt{273}}{8}
Simplify.
x=\frac{\sqrt{273}-1}{8} x=\frac{-\sqrt{273}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}