Solve for x
x=\frac{3y}{2}
Solve for y
y=\frac{2x}{3}
Graph
Share
Copied to clipboard
x=3x-3y
Use the distributive property to multiply 3 by x-y.
x-3x=-3y
Subtract 3x from both sides.
-2x=-3y
Combine x and -3x to get -2x.
\frac{-2x}{-2}=-\frac{3y}{-2}
Divide both sides by -2.
x=-\frac{3y}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{3y}{2}
Divide -3y by -2.
x=3x-3y
Use the distributive property to multiply 3 by x-y.
3x-3y=x
Swap sides so that all variable terms are on the left hand side.
-3y=x-3x
Subtract 3x from both sides.
-3y=-2x
Combine x and -3x to get -2x.
\frac{-3y}{-3}=-\frac{2x}{-3}
Divide both sides by -3.
y=-\frac{2x}{-3}
Dividing by -3 undoes the multiplication by -3.
y=\frac{2x}{3}
Divide -2x by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}