Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=0
Graph
Share
Copied to clipboard
x=2x^{2}-2x
Use the distributive property to multiply 2x by x-1.
x-2x^{2}=-2x
Subtract 2x^{2} from both sides.
x-2x^{2}+2x=0
Add 2x to both sides.
3x-2x^{2}=0
Combine x and 2x to get 3x.
x\left(3-2x\right)=0
Factor out x.
x=0 x=\frac{3}{2}
To find equation solutions, solve x=0 and 3-2x=0.
x=2x^{2}-2x
Use the distributive property to multiply 2x by x-1.
x-2x^{2}=-2x
Subtract 2x^{2} from both sides.
x-2x^{2}+2x=0
Add 2x to both sides.
3x-2x^{2}=0
Combine x and 2x to get 3x.
-2x^{2}+3x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\left(-2\right)}
Take the square root of 3^{2}.
x=\frac{-3±3}{-4}
Multiply 2 times -2.
x=\frac{0}{-4}
Now solve the equation x=\frac{-3±3}{-4} when ± is plus. Add -3 to 3.
x=0
Divide 0 by -4.
x=-\frac{6}{-4}
Now solve the equation x=\frac{-3±3}{-4} when ± is minus. Subtract 3 from -3.
x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
x=0 x=\frac{3}{2}
The equation is now solved.
x=2x^{2}-2x
Use the distributive property to multiply 2x by x-1.
x-2x^{2}=-2x
Subtract 2x^{2} from both sides.
x-2x^{2}+2x=0
Add 2x to both sides.
3x-2x^{2}=0
Combine x and 2x to get 3x.
-2x^{2}+3x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+3x}{-2}=\frac{0}{-2}
Divide both sides by -2.
x^{2}+\frac{3}{-2}x=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{3}{2}x=\frac{0}{-2}
Divide 3 by -2.
x^{2}-\frac{3}{2}x=0
Divide 0 by -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{3}{4} x-\frac{3}{4}=-\frac{3}{4}
Simplify.
x=\frac{3}{2} x=0
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}