Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-12=-\sqrt{x^{2}-25}
Subtract 12 from both sides of the equation.
\left(x-12\right)^{2}=\left(-\sqrt{x^{2}-25}\right)^{2}
Square both sides of the equation.
x^{2}-24x+144=\left(-\sqrt{x^{2}-25}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+144=\left(-1\right)^{2}\left(\sqrt{x^{2}-25}\right)^{2}
Expand \left(-\sqrt{x^{2}-25}\right)^{2}.
x^{2}-24x+144=1\left(\sqrt{x^{2}-25}\right)^{2}
Calculate -1 to the power of 2 and get 1.
x^{2}-24x+144=1\left(x^{2}-25\right)
Calculate \sqrt{x^{2}-25} to the power of 2 and get x^{2}-25.
x^{2}-24x+144=x^{2}-25
Use the distributive property to multiply 1 by x^{2}-25.
x^{2}-24x+144-x^{2}=-25
Subtract x^{2} from both sides.
-24x+144=-25
Combine x^{2} and -x^{2} to get 0.
-24x=-25-144
Subtract 144 from both sides.
-24x=-169
Subtract 144 from -25 to get -169.
x=\frac{-169}{-24}
Divide both sides by -24.
x=\frac{169}{24}
Fraction \frac{-169}{-24} can be simplified to \frac{169}{24} by removing the negative sign from both the numerator and the denominator.
\frac{169}{24}=12-\sqrt{\left(\frac{169}{24}\right)^{2}-25}
Substitute \frac{169}{24} for x in the equation x=12-\sqrt{x^{2}-25}.
\frac{169}{24}=\frac{169}{24}
Simplify. The value x=\frac{169}{24} satisfies the equation.
x=\frac{169}{24}
Equation x-12=-\sqrt{x^{2}-25} has a unique solution.