Solve for x
x = \frac{169}{24} = 7\frac{1}{24} \approx 7.041666667
Graph
Share
Copied to clipboard
x-12=-\sqrt{x^{2}-25}
Subtract 12 from both sides of the equation.
\left(x-12\right)^{2}=\left(-\sqrt{x^{2}-25}\right)^{2}
Square both sides of the equation.
x^{2}-24x+144=\left(-\sqrt{x^{2}-25}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
x^{2}-24x+144=\left(-1\right)^{2}\left(\sqrt{x^{2}-25}\right)^{2}
Expand \left(-\sqrt{x^{2}-25}\right)^{2}.
x^{2}-24x+144=1\left(\sqrt{x^{2}-25}\right)^{2}
Calculate -1 to the power of 2 and get 1.
x^{2}-24x+144=1\left(x^{2}-25\right)
Calculate \sqrt{x^{2}-25} to the power of 2 and get x^{2}-25.
x^{2}-24x+144=x^{2}-25
Use the distributive property to multiply 1 by x^{2}-25.
x^{2}-24x+144-x^{2}=-25
Subtract x^{2} from both sides.
-24x+144=-25
Combine x^{2} and -x^{2} to get 0.
-24x=-25-144
Subtract 144 from both sides.
-24x=-169
Subtract 144 from -25 to get -169.
x=\frac{-169}{-24}
Divide both sides by -24.
x=\frac{169}{24}
Fraction \frac{-169}{-24} can be simplified to \frac{169}{24} by removing the negative sign from both the numerator and the denominator.
\frac{169}{24}=12-\sqrt{\left(\frac{169}{24}\right)^{2}-25}
Substitute \frac{169}{24} for x in the equation x=12-\sqrt{x^{2}-25}.
\frac{169}{24}=\frac{169}{24}
Simplify. The value x=\frac{169}{24} satisfies the equation.
x=\frac{169}{24}
Equation x-12=-\sqrt{x^{2}-25} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}