Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=10x^{2}+4x+20
Use the distributive property to multiply 4 by x+5.
x-10x^{2}=4x+20
Subtract 10x^{2} from both sides.
x-10x^{2}-4x=20
Subtract 4x from both sides.
-3x-10x^{2}=20
Combine x and -4x to get -3x.
-3x-10x^{2}-20=0
Subtract 20 from both sides.
-10x^{2}-3x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)\left(-20\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -3 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)\left(-20\right)}}{2\left(-10\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+40\left(-20\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-3\right)±\sqrt{9-800}}{2\left(-10\right)}
Multiply 40 times -20.
x=\frac{-\left(-3\right)±\sqrt{-791}}{2\left(-10\right)}
Add 9 to -800.
x=\frac{-\left(-3\right)±\sqrt{791}i}{2\left(-10\right)}
Take the square root of -791.
x=\frac{3±\sqrt{791}i}{2\left(-10\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{791}i}{-20}
Multiply 2 times -10.
x=\frac{3+\sqrt{791}i}{-20}
Now solve the equation x=\frac{3±\sqrt{791}i}{-20} when ± is plus. Add 3 to i\sqrt{791}.
x=\frac{-\sqrt{791}i-3}{20}
Divide 3+i\sqrt{791} by -20.
x=\frac{-\sqrt{791}i+3}{-20}
Now solve the equation x=\frac{3±\sqrt{791}i}{-20} when ± is minus. Subtract i\sqrt{791} from 3.
x=\frac{-3+\sqrt{791}i}{20}
Divide 3-i\sqrt{791} by -20.
x=\frac{-\sqrt{791}i-3}{20} x=\frac{-3+\sqrt{791}i}{20}
The equation is now solved.
x=10x^{2}+4x+20
Use the distributive property to multiply 4 by x+5.
x-10x^{2}=4x+20
Subtract 10x^{2} from both sides.
x-10x^{2}-4x=20
Subtract 4x from both sides.
-3x-10x^{2}=20
Combine x and -4x to get -3x.
-10x^{2}-3x=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}-3x}{-10}=\frac{20}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{3}{-10}\right)x=\frac{20}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+\frac{3}{10}x=\frac{20}{-10}
Divide -3 by -10.
x^{2}+\frac{3}{10}x=-2
Divide 20 by -10.
x^{2}+\frac{3}{10}x+\left(\frac{3}{20}\right)^{2}=-2+\left(\frac{3}{20}\right)^{2}
Divide \frac{3}{10}, the coefficient of the x term, by 2 to get \frac{3}{20}. Then add the square of \frac{3}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{10}x+\frac{9}{400}=-2+\frac{9}{400}
Square \frac{3}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{10}x+\frac{9}{400}=-\frac{791}{400}
Add -2 to \frac{9}{400}.
\left(x+\frac{3}{20}\right)^{2}=-\frac{791}{400}
Factor x^{2}+\frac{3}{10}x+\frac{9}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{20}\right)^{2}}=\sqrt{-\frac{791}{400}}
Take the square root of both sides of the equation.
x+\frac{3}{20}=\frac{\sqrt{791}i}{20} x+\frac{3}{20}=-\frac{\sqrt{791}i}{20}
Simplify.
x=\frac{-3+\sqrt{791}i}{20} x=\frac{-\sqrt{791}i-3}{20}
Subtract \frac{3}{20} from both sides of the equation.