Solve for y
y=-\frac{x}{1-x}
x\neq 1
Solve for x
x=-\frac{y}{1-y}
y\neq 1
Graph
Share
Copied to clipboard
x\left(-y+1\right)=-y+1-1
Variable y cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -y+1.
-xy+x=-y+1-1
Use the distributive property to multiply x by -y+1.
-xy+x=-y
Subtract 1 from 1 to get 0.
-xy+x+y=0
Add y to both sides.
-xy+y=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(-x+1\right)y=-x
Combine all terms containing y.
\left(1-x\right)y=-x
The equation is in standard form.
\frac{\left(1-x\right)y}{1-x}=-\frac{x}{1-x}
Divide both sides by -x+1.
y=-\frac{x}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
y=-\frac{x}{1-x}\text{, }y\neq 1
Variable y cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}