Solve for y
y=\frac{9\left(1-x\right)^{2}}{64}-\frac{y_{2}}{4}-\frac{13}{4}
\frac{3x-3}{4}\geq 0
Solve for x (complex solution)
x=\frac{4\sqrt{4y+y_{2}+13}}{3}+1
Solve for y (complex solution)
y=\frac{9\left(1-x\right)^{2}}{64}-\frac{y_{2}}{4}-\frac{13}{4}
x=1\text{ or }arg(\frac{3-3x}{4})\geq \pi
Solve for x
x=\frac{4\sqrt{4y+y_{2}+13}}{3}+1
y_{2}\geq -4y-13
Graph
Share
Copied to clipboard
1+\frac{4}{3}\sqrt{13+y_{2}+4y}=x
Swap sides so that all variable terms are on the left hand side.
\frac{4}{3}\sqrt{13+y_{2}+4y}=x-1
Subtract 1 from both sides.
\frac{\frac{4}{3}\sqrt{4y+y_{2}+13}}{\frac{4}{3}}=\frac{x-1}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
\sqrt{4y+y_{2}+13}=\frac{x-1}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
\sqrt{4y+y_{2}+13}=\frac{3x-3}{4}
Divide x-1 by \frac{4}{3} by multiplying x-1 by the reciprocal of \frac{4}{3}.
4y+y_{2}+13=\frac{9\left(x-1\right)^{2}}{16}
Square both sides of the equation.
4y+y_{2}+13-\left(y_{2}+13\right)=\frac{9\left(x-1\right)^{2}}{16}-\left(y_{2}+13\right)
Subtract 13+y_{2} from both sides of the equation.
4y=\frac{9\left(x-1\right)^{2}}{16}-\left(y_{2}+13\right)
Subtracting 13+y_{2} from itself leaves 0.
4y=\frac{9\left(x-1\right)^{2}}{16}-y_{2}-13
Subtract 13+y_{2} from \frac{9\left(-1+x\right)^{2}}{16}.
\frac{4y}{4}=\frac{\frac{9\left(x-1\right)^{2}}{16}-y_{2}-13}{4}
Divide both sides by 4.
y=\frac{\frac{9\left(x-1\right)^{2}}{16}-y_{2}-13}{4}
Dividing by 4 undoes the multiplication by 4.
y=\frac{9\left(x-1\right)^{2}}{64}-\frac{y_{2}}{4}-\frac{13}{4}
Divide \frac{9\left(-1+x\right)^{2}}{16}-13-y_{2} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}