Solve for x
x=2\sqrt{14}+8\approx 15.483314774
x=8-2\sqrt{14}\approx 0.516685226
Graph
Share
Copied to clipboard
x-1=\frac{1}{8}x^{2}-x
Subtract 1 from both sides.
x-1-\frac{1}{8}x^{2}=-x
Subtract \frac{1}{8}x^{2} from both sides.
x-1-\frac{1}{8}x^{2}+x=0
Add x to both sides.
2x-1-\frac{1}{8}x^{2}=0
Combine x and x to get 2x.
-\frac{1}{8}x^{2}+2x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{8}\right)\left(-1\right)}}{2\left(-\frac{1}{8}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{8} for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{8}\right)\left(-1\right)}}{2\left(-\frac{1}{8}\right)}
Square 2.
x=\frac{-2±\sqrt{4+\frac{1}{2}\left(-1\right)}}{2\left(-\frac{1}{8}\right)}
Multiply -4 times -\frac{1}{8}.
x=\frac{-2±\sqrt{4-\frac{1}{2}}}{2\left(-\frac{1}{8}\right)}
Multiply \frac{1}{2} times -1.
x=\frac{-2±\sqrt{\frac{7}{2}}}{2\left(-\frac{1}{8}\right)}
Add 4 to -\frac{1}{2}.
x=\frac{-2±\frac{\sqrt{14}}{2}}{2\left(-\frac{1}{8}\right)}
Take the square root of \frac{7}{2}.
x=\frac{-2±\frac{\sqrt{14}}{2}}{-\frac{1}{4}}
Multiply 2 times -\frac{1}{8}.
x=\frac{\frac{\sqrt{14}}{2}-2}{-\frac{1}{4}}
Now solve the equation x=\frac{-2±\frac{\sqrt{14}}{2}}{-\frac{1}{4}} when ± is plus. Add -2 to \frac{\sqrt{14}}{2}.
x=8-2\sqrt{14}
Divide -2+\frac{\sqrt{14}}{2} by -\frac{1}{4} by multiplying -2+\frac{\sqrt{14}}{2} by the reciprocal of -\frac{1}{4}.
x=\frac{-\frac{\sqrt{14}}{2}-2}{-\frac{1}{4}}
Now solve the equation x=\frac{-2±\frac{\sqrt{14}}{2}}{-\frac{1}{4}} when ± is minus. Subtract \frac{\sqrt{14}}{2} from -2.
x=2\sqrt{14}+8
Divide -2-\frac{\sqrt{14}}{2} by -\frac{1}{4} by multiplying -2-\frac{\sqrt{14}}{2} by the reciprocal of -\frac{1}{4}.
x=8-2\sqrt{14} x=2\sqrt{14}+8
The equation is now solved.
x-\frac{1}{8}x^{2}=1-x
Subtract \frac{1}{8}x^{2} from both sides.
x-\frac{1}{8}x^{2}+x=1
Add x to both sides.
2x-\frac{1}{8}x^{2}=1
Combine x and x to get 2x.
-\frac{1}{8}x^{2}+2x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{8}x^{2}+2x}{-\frac{1}{8}}=\frac{1}{-\frac{1}{8}}
Multiply both sides by -8.
x^{2}+\frac{2}{-\frac{1}{8}}x=\frac{1}{-\frac{1}{8}}
Dividing by -\frac{1}{8} undoes the multiplication by -\frac{1}{8}.
x^{2}-16x=\frac{1}{-\frac{1}{8}}
Divide 2 by -\frac{1}{8} by multiplying 2 by the reciprocal of -\frac{1}{8}.
x^{2}-16x=-8
Divide 1 by -\frac{1}{8} by multiplying 1 by the reciprocal of -\frac{1}{8}.
x^{2}-16x+\left(-8\right)^{2}=-8+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-8+64
Square -8.
x^{2}-16x+64=56
Add -8 to 64.
\left(x-8\right)^{2}=56
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{56}
Take the square root of both sides of the equation.
x-8=2\sqrt{14} x-8=-2\sqrt{14}
Simplify.
x=2\sqrt{14}+8 x=8-2\sqrt{14}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}