Solve for N (complex solution)
\left\{\begin{matrix}N=-\frac{tx}{\Phi }\text{, }&\Phi \neq 0\text{ and }\Delta \neq 0\text{ and }t\neq 0\\N\in \mathrm{C}\text{, }&x=0\text{ and }\Phi =0\text{ and }t\neq 0\text{ and }\Delta \neq 0\end{matrix}\right.
Solve for N
\left\{\begin{matrix}N=-\frac{tx}{\Phi }\text{, }&\Phi \neq 0\text{ and }\Delta \neq 0\text{ and }t\neq 0\\N\in \mathrm{R}\text{, }&x=0\text{ and }\Phi =0\text{ and }t\neq 0\text{ and }\Delta \neq 0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{N\Phi }{x}\text{, }&\Phi \neq 0\text{ and }N\neq 0\text{ and }x\neq 0\text{ and }\Delta \neq 0\\t\neq 0\text{, }&\left(\Phi =0\text{ or }N=0\right)\text{ and }x=0\text{ and }\Delta \neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
xt\Delta =\left(-N\right)\Delta \Phi
Multiply both sides of the equation by t\Delta .
\left(-N\right)\Delta \Phi =xt\Delta
Swap sides so that all variable terms are on the left hand side.
-N\Delta \Phi =tx\Delta
Reorder the terms.
\left(-\Delta \Phi \right)N=tx\Delta
The equation is in standard form.
\frac{\left(-\Delta \Phi \right)N}{-\Delta \Phi }=\frac{tx\Delta }{-\Delta \Phi }
Divide both sides by -\Delta \Phi .
N=\frac{tx\Delta }{-\Delta \Phi }
Dividing by -\Delta \Phi undoes the multiplication by -\Delta \Phi .
N=-\frac{tx}{\Phi }
Divide tx\Delta by -\Delta \Phi .
xt\Delta =\left(-N\right)\Delta \Phi
Multiply both sides of the equation by t\Delta .
\left(-N\right)\Delta \Phi =xt\Delta
Swap sides so that all variable terms are on the left hand side.
-N\Delta \Phi =tx\Delta
Reorder the terms.
\left(-\Delta \Phi \right)N=tx\Delta
The equation is in standard form.
\frac{\left(-\Delta \Phi \right)N}{-\Delta \Phi }=\frac{tx\Delta }{-\Delta \Phi }
Divide both sides by -\Delta \Phi .
N=\frac{tx\Delta }{-\Delta \Phi }
Dividing by -\Delta \Phi undoes the multiplication by -\Delta \Phi .
N=-\frac{tx}{\Phi }
Divide tx\Delta by -\Delta \Phi .
xt\Delta =\left(-N\right)\Delta \Phi
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t\Delta .
tx\Delta =\left(-N\right)\Delta \Phi
Reorder the terms.
tx\Delta =-N\Delta \Phi
Reorder the terms.
x\Delta t=-N\Delta \Phi
The equation is in standard form.
\frac{x\Delta t}{x\Delta }=-\frac{N\Delta \Phi }{x\Delta }
Divide both sides by x\Delta .
t=-\frac{N\Delta \Phi }{x\Delta }
Dividing by x\Delta undoes the multiplication by x\Delta .
t=-\frac{N\Phi }{x}
Divide -N\Delta \Phi by x\Delta .
t=-\frac{N\Phi }{x}\text{, }t\neq 0
Variable t cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}