x=-8(1+ \sqrt{ -2x) }
Solve for x
x=-32\sqrt{5}-72\approx -143.55417528
Graph
Share
Copied to clipboard
x=-8-8\sqrt{-2x}
Use the distributive property to multiply -8 by 1+\sqrt{-2x}.
x+8\sqrt{-2x}=-8
Add 8\sqrt{-2x} to both sides.
8\sqrt{-2x}=-8-x
Subtract x from both sides of the equation.
\left(8\sqrt{-2x}\right)^{2}=\left(-8-x\right)^{2}
Square both sides of the equation.
8^{2}\left(\sqrt{-2x}\right)^{2}=\left(-8-x\right)^{2}
Expand \left(8\sqrt{-2x}\right)^{2}.
64\left(\sqrt{-2x}\right)^{2}=\left(-8-x\right)^{2}
Calculate 8 to the power of 2 and get 64.
64\left(-2\right)x=\left(-8-x\right)^{2}
Calculate \sqrt{-2x} to the power of 2 and get -2x.
-128x=\left(-8-x\right)^{2}
Multiply 64 and -2 to get -128.
-128x=64+16x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-8-x\right)^{2}.
-128x-16x=64+x^{2}
Subtract 16x from both sides.
-144x=64+x^{2}
Combine -128x and -16x to get -144x.
-144x-x^{2}=64
Subtract x^{2} from both sides.
-x^{2}-144x=64
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-144x-64=64-64
Subtract 64 from both sides of the equation.
-x^{2}-144x-64=0
Subtracting 64 from itself leaves 0.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\left(-1\right)\left(-64\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -144 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-144\right)±\sqrt{20736-4\left(-1\right)\left(-64\right)}}{2\left(-1\right)}
Square -144.
x=\frac{-\left(-144\right)±\sqrt{20736+4\left(-64\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-144\right)±\sqrt{20736-256}}{2\left(-1\right)}
Multiply 4 times -64.
x=\frac{-\left(-144\right)±\sqrt{20480}}{2\left(-1\right)}
Add 20736 to -256.
x=\frac{-\left(-144\right)±64\sqrt{5}}{2\left(-1\right)}
Take the square root of 20480.
x=\frac{144±64\sqrt{5}}{2\left(-1\right)}
The opposite of -144 is 144.
x=\frac{144±64\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{64\sqrt{5}+144}{-2}
Now solve the equation x=\frac{144±64\sqrt{5}}{-2} when ± is plus. Add 144 to 64\sqrt{5}.
x=-32\sqrt{5}-72
Divide 144+64\sqrt{5} by -2.
x=\frac{144-64\sqrt{5}}{-2}
Now solve the equation x=\frac{144±64\sqrt{5}}{-2} when ± is minus. Subtract 64\sqrt{5} from 144.
x=32\sqrt{5}-72
Divide 144-64\sqrt{5} by -2.
x=-32\sqrt{5}-72 x=32\sqrt{5}-72
The equation is now solved.
-32\sqrt{5}-72=-8\left(1+\sqrt{-2\left(-32\sqrt{5}-72\right)}\right)
Substitute -32\sqrt{5}-72 for x in the equation x=-8\left(1+\sqrt{-2x}\right).
-32\times 5^{\frac{1}{2}}-72=-72-32\times 5^{\frac{1}{2}}
Simplify. The value x=-32\sqrt{5}-72 satisfies the equation.
32\sqrt{5}-72=-8\left(1+\sqrt{-2\left(32\sqrt{5}-72\right)}\right)
Substitute 32\sqrt{5}-72 for x in the equation x=-8\left(1+\sqrt{-2x}\right).
32\times 5^{\frac{1}{2}}-72=56-32\times 5^{\frac{1}{2}}
Simplify. The value x=32\sqrt{5}-72 does not satisfy the equation.
x=-32\sqrt{5}-72
Equation 8\sqrt{-2x}=-x-8 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}