Solve for y
y=\frac{3x+16}{x+6}
x\neq -6
Solve for x
x=-\frac{2\left(3y-8\right)}{y-3}
y\neq 3
Graph
Share
Copied to clipboard
x\left(y-3\right)=\left(y-3\right)\left(-6\right)-2
Variable y cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by y-3.
xy-3x=\left(y-3\right)\left(-6\right)-2
Use the distributive property to multiply x by y-3.
xy-3x=-6y+18-2
Use the distributive property to multiply y-3 by -6.
xy-3x=-6y+16
Subtract 2 from 18 to get 16.
xy-3x+6y=16
Add 6y to both sides.
xy+6y=16+3x
Add 3x to both sides.
\left(x+6\right)y=16+3x
Combine all terms containing y.
\left(x+6\right)y=3x+16
The equation is in standard form.
\frac{\left(x+6\right)y}{x+6}=\frac{3x+16}{x+6}
Divide both sides by x+6.
y=\frac{3x+16}{x+6}
Dividing by x+6 undoes the multiplication by x+6.
y=\frac{3x+16}{x+6}\text{, }y\neq 3
Variable y cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}