Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=-6x^{2}+10x-8
Use the distributive property to multiply -2 by 3x^{2}-5x+4.
x+6x^{2}=10x-8
Add 6x^{2} to both sides.
x+6x^{2}-10x=-8
Subtract 10x from both sides.
-9x+6x^{2}=-8
Combine x and -10x to get -9x.
-9x+6x^{2}+8=0
Add 8 to both sides.
6x^{2}-9x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 6\times 8}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -9 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 6\times 8}}{2\times 6}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-24\times 8}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-9\right)±\sqrt{81-192}}{2\times 6}
Multiply -24 times 8.
x=\frac{-\left(-9\right)±\sqrt{-111}}{2\times 6}
Add 81 to -192.
x=\frac{-\left(-9\right)±\sqrt{111}i}{2\times 6}
Take the square root of -111.
x=\frac{9±\sqrt{111}i}{2\times 6}
The opposite of -9 is 9.
x=\frac{9±\sqrt{111}i}{12}
Multiply 2 times 6.
x=\frac{9+\sqrt{111}i}{12}
Now solve the equation x=\frac{9±\sqrt{111}i}{12} when ± is plus. Add 9 to i\sqrt{111}.
x=\frac{\sqrt{111}i}{12}+\frac{3}{4}
Divide 9+i\sqrt{111} by 12.
x=\frac{-\sqrt{111}i+9}{12}
Now solve the equation x=\frac{9±\sqrt{111}i}{12} when ± is minus. Subtract i\sqrt{111} from 9.
x=-\frac{\sqrt{111}i}{12}+\frac{3}{4}
Divide 9-i\sqrt{111} by 12.
x=\frac{\sqrt{111}i}{12}+\frac{3}{4} x=-\frac{\sqrt{111}i}{12}+\frac{3}{4}
The equation is now solved.
x=-6x^{2}+10x-8
Use the distributive property to multiply -2 by 3x^{2}-5x+4.
x+6x^{2}=10x-8
Add 6x^{2} to both sides.
x+6x^{2}-10x=-8
Subtract 10x from both sides.
-9x+6x^{2}=-8
Combine x and -10x to get -9x.
6x^{2}-9x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-9x}{6}=-\frac{8}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{9}{6}\right)x=-\frac{8}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{3}{2}x=-\frac{8}{6}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{3}{2}x=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{4}{3}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{4}{3}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{37}{48}
Add -\frac{4}{3} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=-\frac{37}{48}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{37}{48}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{111}i}{12} x-\frac{3}{4}=-\frac{\sqrt{111}i}{12}
Simplify.
x=\frac{\sqrt{111}i}{12}+\frac{3}{4} x=-\frac{\sqrt{111}i}{12}+\frac{3}{4}
Add \frac{3}{4} to both sides of the equation.