Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+16x^{2}=81x+5
Add 16x^{2} to both sides.
x+16x^{2}-81x=5
Subtract 81x from both sides.
-80x+16x^{2}=5
Combine x and -81x to get -80x.
-80x+16x^{2}-5=0
Subtract 5 from both sides.
16x^{2}-80x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 16\left(-5\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -80 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 16\left(-5\right)}}{2\times 16}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-64\left(-5\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-80\right)±\sqrt{6400+320}}{2\times 16}
Multiply -64 times -5.
x=\frac{-\left(-80\right)±\sqrt{6720}}{2\times 16}
Add 6400 to 320.
x=\frac{-\left(-80\right)±8\sqrt{105}}{2\times 16}
Take the square root of 6720.
x=\frac{80±8\sqrt{105}}{2\times 16}
The opposite of -80 is 80.
x=\frac{80±8\sqrt{105}}{32}
Multiply 2 times 16.
x=\frac{8\sqrt{105}+80}{32}
Now solve the equation x=\frac{80±8\sqrt{105}}{32} when ± is plus. Add 80 to 8\sqrt{105}.
x=\frac{\sqrt{105}}{4}+\frac{5}{2}
Divide 80+8\sqrt{105} by 32.
x=\frac{80-8\sqrt{105}}{32}
Now solve the equation x=\frac{80±8\sqrt{105}}{32} when ± is minus. Subtract 8\sqrt{105} from 80.
x=-\frac{\sqrt{105}}{4}+\frac{5}{2}
Divide 80-8\sqrt{105} by 32.
x=\frac{\sqrt{105}}{4}+\frac{5}{2} x=-\frac{\sqrt{105}}{4}+\frac{5}{2}
The equation is now solved.
x+16x^{2}=81x+5
Add 16x^{2} to both sides.
x+16x^{2}-81x=5
Subtract 81x from both sides.
-80x+16x^{2}=5
Combine x and -81x to get -80x.
16x^{2}-80x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}-80x}{16}=\frac{5}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{80}{16}\right)x=\frac{5}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-5x=\frac{5}{16}
Divide -80 by 16.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{5}{16}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{5}{16}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{105}{16}
Add \frac{5}{16} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{105}{16}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{105}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{105}}{4} x-\frac{5}{2}=-\frac{\sqrt{105}}{4}
Simplify.
x=\frac{\sqrt{105}}{4}+\frac{5}{2} x=-\frac{\sqrt{105}}{4}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.