Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+\frac{1}{2}x^{2}=3x+\frac{7}{2}
Add \frac{1}{2}x^{2} to both sides.
x+\frac{1}{2}x^{2}-3x=\frac{7}{2}
Subtract 3x from both sides.
-2x+\frac{1}{2}x^{2}=\frac{7}{2}
Combine x and -3x to get -2x.
-2x+\frac{1}{2}x^{2}-\frac{7}{2}=0
Subtract \frac{7}{2} from both sides.
\frac{1}{2}x^{2}-2x-\frac{7}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\left(-\frac{7}{2}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and -\frac{7}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\left(-\frac{7}{2}\right)}}{2\times \frac{1}{2}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\left(-\frac{7}{2}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4+7}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{7}{2}.
x=\frac{-\left(-2\right)±\sqrt{11}}{2\times \frac{1}{2}}
Add 4 to 7.
x=\frac{2±\sqrt{11}}{2\times \frac{1}{2}}
The opposite of -2 is 2.
x=\frac{2±\sqrt{11}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{11}+2}{1}
Now solve the equation x=\frac{2±\sqrt{11}}{1} when ± is plus. Add 2 to \sqrt{11}.
x=\sqrt{11}+2
Divide 2+\sqrt{11} by 1.
x=\frac{2-\sqrt{11}}{1}
Now solve the equation x=\frac{2±\sqrt{11}}{1} when ± is minus. Subtract \sqrt{11} from 2.
x=2-\sqrt{11}
Divide 2-\sqrt{11} by 1.
x=\sqrt{11}+2 x=2-\sqrt{11}
The equation is now solved.
x+\frac{1}{2}x^{2}=3x+\frac{7}{2}
Add \frac{1}{2}x^{2} to both sides.
x+\frac{1}{2}x^{2}-3x=\frac{7}{2}
Subtract 3x from both sides.
-2x+\frac{1}{2}x^{2}=\frac{7}{2}
Combine x and -3x to get -2x.
\frac{1}{2}x^{2}-2x=\frac{7}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=\frac{\frac{7}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=\frac{\frac{7}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-4x=\frac{\frac{7}{2}}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x=7
Divide \frac{7}{2} by \frac{1}{2} by multiplying \frac{7}{2} by the reciprocal of \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=7+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=7+4
Square -2.
x^{2}-4x+4=11
Add 7 to 4.
\left(x-2\right)^{2}=11
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x-2=\sqrt{11} x-2=-\sqrt{11}
Simplify.
x=\sqrt{11}+2 x=2-\sqrt{11}
Add 2 to both sides of the equation.