Solve for x
x=6\left(\sqrt{3}+1\right)\approx 16.392304845
Graph
Share
Copied to clipboard
x=\frac{\left(12+x\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{12+x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{\left(12+x\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
x=\frac{12\sqrt{3}+x\sqrt{3}}{3}
Use the distributive property to multiply 12+x by \sqrt{3}.
x-\frac{12\sqrt{3}+x\sqrt{3}}{3}=0
Subtract \frac{12\sqrt{3}+x\sqrt{3}}{3} from both sides.
3x-\left(12\sqrt{3}+x\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3x-12\sqrt{3}-x\sqrt{3}=0
To find the opposite of 12\sqrt{3}+x\sqrt{3}, find the opposite of each term.
3x-x\sqrt{3}=12\sqrt{3}
Add 12\sqrt{3} to both sides. Anything plus zero gives itself.
\left(3-\sqrt{3}\right)x=12\sqrt{3}
Combine all terms containing x.
\frac{\left(3-\sqrt{3}\right)x}{3-\sqrt{3}}=\frac{12\sqrt{3}}{3-\sqrt{3}}
Divide both sides by 3-\sqrt{3}.
x=\frac{12\sqrt{3}}{3-\sqrt{3}}
Dividing by 3-\sqrt{3} undoes the multiplication by 3-\sqrt{3}.
x=6\sqrt{3}+6
Divide 12\sqrt{3} by 3-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}