Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{\left(12+x\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{12+x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
x=\frac{\left(12+x\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
x=\frac{12\sqrt{3}+x\sqrt{3}}{3}
Use the distributive property to multiply 12+x by \sqrt{3}.
x-\frac{12\sqrt{3}+x\sqrt{3}}{3}=0
Subtract \frac{12\sqrt{3}+x\sqrt{3}}{3} from both sides.
3x-\left(12\sqrt{3}+x\sqrt{3}\right)=0
Multiply both sides of the equation by 3.
3x-12\sqrt{3}-x\sqrt{3}=0
To find the opposite of 12\sqrt{3}+x\sqrt{3}, find the opposite of each term.
3x-x\sqrt{3}=12\sqrt{3}
Add 12\sqrt{3} to both sides. Anything plus zero gives itself.
\left(3-\sqrt{3}\right)x=12\sqrt{3}
Combine all terms containing x.
\frac{\left(3-\sqrt{3}\right)x}{3-\sqrt{3}}=\frac{12\sqrt{3}}{3-\sqrt{3}}
Divide both sides by 3-\sqrt{3}.
x=\frac{12\sqrt{3}}{3-\sqrt{3}}
Dividing by 3-\sqrt{3} undoes the multiplication by 3-\sqrt{3}.
x=6\sqrt{3}+6
Divide 12\sqrt{3} by 3-\sqrt{3}.