Solve for x
x=\frac{\sqrt{23}}{4806000000000000000000000000}\approx 9.978842121 \cdot 10^{-28}
Assign x
x≔\frac{\sqrt{23}}{4806000000000000000000000000}
Graph
Share
Copied to clipboard
x=\frac{\frac{\sqrt{2.3\times \frac{1}{1000000}}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
x=\frac{\frac{\sqrt{\frac{23}{10000000}}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Multiply 2.3 and \frac{1}{1000000} to get \frac{23}{10000000}.
x=\frac{\frac{\frac{\sqrt{23}}{\sqrt{10000000}}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Rewrite the square root of the division \sqrt{\frac{23}{10000000}} as the division of square roots \frac{\sqrt{23}}{\sqrt{10000000}}.
x=\frac{\frac{\frac{\sqrt{23}}{1000\sqrt{10}}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Factor 10000000=1000^{2}\times 10. Rewrite the square root of the product \sqrt{1000^{2}\times 10} as the product of square roots \sqrt{1000^{2}}\sqrt{10}. Take the square root of 1000^{2}.
x=\frac{\frac{\frac{\sqrt{23}\sqrt{10}}{1000\left(\sqrt{10}\right)^{2}}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Rationalize the denominator of \frac{\sqrt{23}}{1000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
x=\frac{\frac{\frac{\sqrt{23}\sqrt{10}}{1000\times 10}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
The square of \sqrt{10} is 10.
x=\frac{\frac{\frac{\sqrt{230}}{1000\times 10}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
To multiply \sqrt{23} and \sqrt{10}, multiply the numbers under the square root.
x=\frac{\frac{\frac{\sqrt{230}}{10000}}{\sqrt{9\times 10^{9}}}}{1.602}\times 10^{-19}
Multiply 1000 and 10 to get 10000.
x=\frac{\frac{\frac{\sqrt{230}}{10000}}{\sqrt{9\times 1000000000}}}{1.602}\times 10^{-19}
Calculate 10 to the power of 9 and get 1000000000.
x=\frac{\frac{\frac{\sqrt{230}}{10000}}{\sqrt{9000000000}}}{1.602}\times 10^{-19}
Multiply 9 and 1000000000 to get 9000000000.
x=\frac{\frac{\frac{\sqrt{230}}{10000}}{30000\sqrt{10}}}{1.602}\times 10^{-19}
Factor 9000000000=30000^{2}\times 10. Rewrite the square root of the product \sqrt{30000^{2}\times 10} as the product of square roots \sqrt{30000^{2}}\sqrt{10}. Take the square root of 30000^{2}.
x=\frac{\frac{\sqrt{230}}{10000\times 30000\sqrt{10}}}{1.602}\times 10^{-19}
Express \frac{\frac{\sqrt{230}}{10000}}{30000\sqrt{10}} as a single fraction.
x=\frac{\frac{\sqrt{230}\sqrt{10}}{10000\times 30000\left(\sqrt{10}\right)^{2}}}{1.602}\times 10^{-19}
Rationalize the denominator of \frac{\sqrt{230}}{10000\times 30000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
x=\frac{\frac{\sqrt{230}\sqrt{10}}{10000\times 30000\times 10}}{1.602}\times 10^{-19}
The square of \sqrt{10} is 10.
x=\frac{\frac{\sqrt{10}\sqrt{23}\sqrt{10}}{10000\times 30000\times 10}}{1.602}\times 10^{-19}
Factor 230=10\times 23. Rewrite the square root of the product \sqrt{10\times 23} as the product of square roots \sqrt{10}\sqrt{23}.
x=\frac{\frac{10\sqrt{23}}{10000\times 30000\times 10}}{1.602}\times 10^{-19}
Multiply \sqrt{10} and \sqrt{10} to get 10.
x=\frac{\frac{10\sqrt{23}}{300000000\times 10}}{1.602}\times 10^{-19}
Multiply 10000 and 30000 to get 300000000.
x=\frac{\frac{10\sqrt{23}}{3000000000}}{1.602}\times 10^{-19}
Multiply 300000000 and 10 to get 3000000000.
x=\frac{\frac{1}{300000000}\sqrt{23}}{1.602}\times 10^{-19}
Divide 10\sqrt{23} by 3000000000 to get \frac{1}{300000000}\sqrt{23}.
x=\frac{1}{480600000}\sqrt{23}\times 10^{-19}
Divide \frac{1}{300000000}\sqrt{23} by 1.602 to get \frac{1}{480600000}\sqrt{23}.
x=\frac{1}{480600000}\sqrt{23}\times \frac{1}{10000000000000000000}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
x=\frac{1}{4806000000000000000000000000}\sqrt{23}
Multiply \frac{1}{480600000} and \frac{1}{10000000000000000000} to get \frac{1}{4806000000000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}